TRAL
B/

Flux

Security Assessment

November 8, 2023

Prepared for:
Hidde Beydals
Open Source Technology Improvement Fund (OSTIF)

Prepared by: Maciej Domanski and Sam Alws

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high-end security research with a real-world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we've helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O'Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.

228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Flux Security Assessment
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2023 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to OSTIF
under the terms of the project statement of work and has been made public at OSTIF's
request. Material within this report may not be reproduced or distributed in part or in
whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer

All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 Flux Security Assessment
PUBLIC

https://github.com/trailofbits/publications

Table of Contents

About Trail of Bits 1
Notices and Remarks 2
Table of Contents 3
Executive Summary 4
Project Summary 6
Project Goals 7
Project Targets 9
Project Coverage 10
Automated Testing 11
Codebase Maturity Evaluation 12
Summary of Findings 14
Detailed Findings 15
1. SetExpiration does not set the expiration for the given key 15
2. Inappropriate string trimming function 17

3. Go's default HTTP client uses a shared value that can be modified by other
components 18
4. Unhandled error value 20
5. Potential implicit memory aliasing in for loops 22
6. Directories created via os.MkdirAll are not checked for permissions 24
7. Directories and files created with overly lenient permissions 25
8. No restriction on minimum SSH RSA public key bit size 26
9. Flux macOS release binary susceptible to .dylib injection 28
10. Path traversal in Securejoin implementation 30
A. Vulnerability Categories 33
B. Code Maturity Categories 35
C. Non-Security-Related Findings 37
D. Issue Occurrences 39
E. Automated Static Analysis 42
F. Fix Review Results 44
Detailed Fix Review Results 46
G. Fix Review Status Categories 48
Trail of Bits 3 Flux Security Assessment

PUBLIC

Executive Summary

Engagement Overview

OSTIF engaged Trail of Bits to review the security of Flux, a tool for keeping Kubernetes
clusters in sync with configuration sources.

A team of two consultants conducted the review from July 24 to August 4, 2023, for a total
of four engineer-weeks of effort. Our testing efforts focused on the elements that are part
of the General Availability release. With full access to source code and documentation, we
performed static and dynamic testing of the Flux tool, using automated and manual
processes.

Observations and Impact

Trail of Bits found that Flux is well structured and generally written defensively. However,
we identified one undetermined-severity finding, TOB-FLUX-10, that poses an immediate
risk to users if the underlying package is treated as a standalone library because its main
security guarantee of preventing unauthorized read/write operations outside the root
directory has been proven false.

We did not identify any other findings that present an immediate threat to Flux or its users.
However, we did identify findings that could have been uncovered with more robust unit
testing (TOB-FLUX-1 and TOB-FLUX-2). By expanding unit test coverage, Flux can further
enhance its resilience.

Recommendations

Based on the codebase maturity evaluation and findings identified during the security
review, Trail of Bits recommends that OSTIF take the following steps:

e Remediate the findings disclosed in this report. These findings should be
addressed as part of a direct remediation or as part of any refactor that may occur
when addressing other recommendations.

e Implement static analysis tools in the CI/CD pipeline. Implementing additional
tools presented in appendix E will help automatically find issues in the code that
could lead to security vulnerabilities before they are merged into the codebase.

Trail of Bits 4 Flux Security Assessment
PUBLIC

Finding Severities and Categories

The following tables provide the number of findings by severity and category.

EXPOSURE ANALYSIS

Severity
| High
Medium
Low
‘ Informational

Undetermined

Trail of Bits
PUBLIC

Count

CATEGORY BREAKDOWN
Category Count
Access Controls 1
Configuration 2
Data Validation 3
Error Reporting 1
Undefined Behavior 3

Flux Security Assessment

Project Summary

Contact Information
The following managers were associated with this project:

Dan Guido, Account Manager Jeff Braswell, Project Manager
dan@trailofbits.com jeff.braswell@trailofbits.com

The following engineers were associated with this project:

Maciej Domanski, Consultant Sam Alws, Consultant
maciej.domanski@trailofbits.com sam.alws@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

July 20, 2023 Pre-project kickoff call

July 31, 2023 Status update meeting #1

August 4, 2023 Delivery of report draft

August 4, 2023 Report readout meeting

October 20, 2023 Delivery of report draft with fix review

November 8, 2023 Delivery of comprehensive report with fix review

Trail of Bits 6 Flux Security Assessment

PUBLIC

mailto:dan@trailofbits.com

Project Goals

The engagement was scoped to provide a security assessment of the Flux tool. Specifically,
we sought to answer the following non-exhaustive list of questions:

Does the codebase conform to industry best practices?
Are the system architecture and design foundationally secure?

Are there any data exposures to or data extractions by unknown or unauthorized
sources?

Can Flux be used to deliver malicious payloads and executables?

Does Flux correctly use the Kubernetes API extension system and other core
components of the Kubernetes ecosystem?

Does Flux securely handle credential storage and use?
Are there appropriate access controls on critical functions?

Are there areas within ownership and access controls that may be compromised or
altered to cause adverse states, unauthorized access, or exploitation?

Can security constraints when syncing repositories and files be bypassed?
Can files outside the designated file structure be replaced and/or modified?
Could the system experience a denial of service (DoS)?

Are all inputs and system parameters validated correctly?

Do adequate account management, security controls, and separation exist to
operate the accounts safely?

How are automated testing and validation of security controls in pipelines
performed?

Are strong sign-in mechanisms used? How long do credentials last?
What security mechanisms are used to store secrets?
How are account groups, permissions, and attributes provisioned securely?

How are public and cross-account access mechanisms managed?

Trail of Bits 7 Flux Security Assessment
PUBLIC

e How are shared resources managed and secured?
e How are service and application logging configured and monitored?
e How are data and customer information protected at rest and in transit?

e If supporting a multi-tenant environment, how is isolation implemented between
the tenants? What resources are shared between tenants?

e Are access controls for cross-namespace objects implemented securely?

Trail of Bits 8 Flux Security Assessment
PUBLIC

Project Targets

The engagement involved a review and testing of the targets listed below.

kustomize-controller

Repository
Version

Type

Platform

https://github.com/fluxcd/kustomize-controller
8d9a1811655fff9a093f9c98397e2edB806876110
Golang

Linux

source-controller

Repository
Version

Type

Platform

https://github.com/fluxcd/source-controller
7f40be76€90b2d4afe9f8f9d7f53ac719fe1205¢e
Golang

Linux

notification-controller

Repository
Version
Type

Platform

flux2
Repository

Version
Type
Platform
pkg
Repository
Version
Type
Platform

Trail of Bits
PUBLIC

https://github.com/fluxcd/notification-controller
b80c2c4060f62af40c06fe2f6f3bef295ee56e43
Golang

Linux

https://github.com/fluxcd/flux2
44d69d6fcBc353e79c1badB21ad4acal35033bce8
Golang

Linux

https://github.com/fluxcd/pkg
2a323d771e17af02dee2ccbbb9b445b78ab048e5
Golang

Linux

Flux Security Assessment

Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches included the following:

Manually reviewing the provided repositories with a focus on the controllers with
the General Availability components:

o source-controller

o kustomize-controller

o notification-controller

o flux2

o The pkg repository—in particular, the git/gogit/fs component

Running static analysis tools and triaging results

Coverage Limitations

Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. The following list outlines the coverage limitations of the engagement and
indicates system elements that may warrant further review:

We did not review the helm-controller, image-automation-controller, and
image-reflector-controller components since they are not General
Availability components.

We did not thoroughly review the “Flux Multi-tenancy Threat Modelling” document.
However, it was the basis for our assumptions and potential attack scenarios.

We did not review unit, end-to-end, or integration tests for completeness, nor did
we evaluate the fuzz testing coverage.

We did not review whether logging information was sufficient.

The list of outdated dependencies and deprecated methods was not included in our
assessment. Instead, we focused on analyzing the code of third-party libraries while
reviewing specific components.

Trail of Bits 10 Flux Security Assessment
PUBLIC

Automated Testing

Trail of Bits uses automated techniques to extensively test the security properties of
software. We use both open-source static analysis and fuzzing utilities, along with tools
developed in house, to perform automated testing of source code and compiled software.

Test Harness Configuration

We used the following tools in the automated testing phase of this project:

Tool Description Policy

Semgrep A static analysis tool designed to identify bugs and Appendix E
specific code patterns across multiple languages

CodeQL A code analysis engine developed by GitHub to Appendix E
automate security checks

TruffleHog An open-source tool that scans Git repositories for Appendix E
secrets such as private keys and API tokens

golangci-lint A Go linters aggregator Appendix E

Areas of Focus

Our automated testing and verification work focused on the following system properties:
e The system does not produce undefined behavior.

e The code does not contain security or quality issues.

Trail of Bits 11 Flux Security Assessment
PUBLIC

https://github.com/returntocorp/semgrep
https://codeql.github.com/
https://github.com/trufflesecurity/trufflehog
https://golangci-lint.run/

Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category

Arithmetic

Auditing

Authentication /
Access Controls

Complexity
Management

Configuration

Trail of Bits
PUBLIC

Summary Result

The application’s primary purpose does not involve Satisfactory
mathematical operations; however, as with any software,

arithmetic operations are present. We found no

significant issues concerning the proper use of

mathematical operations.

The density and quality of logged information is Further
sufficient. However, we did not try to verify this for all Investigation
execution paths or verify whether all information Required

required to perform incident response is always logged.

The Kubernetes role-based access controls (RBACs) Satisfactory
follow best practices. RBAC impersonation is used to limit
the permissions of tenants.

Overall, the Flux codebase has a logical organization and Satisfactory
clear structures to manage the system'’s complexity. It is

possible for a new developer to quickly understand the

structure of the Flux codebase.

However, we found duplicate code that uses two distinct
SecureJoin implementations from different packages
with nearly identical implementations (appendix C, item
4).

We found that specific components are generally Satisfactory
configured securely. However, some directories have

overly lenient permissions (TOB-FLUX-7). Additionally,

consider hardening the macOS release binary against

potential .dylib hijacking (TOB-FLUX-9).

12 Flux Security Assessment

Cryptography
and Key
Management

Data Handling

Documentation

Maintenance

Memory Safety
and Error
Handling

Testing and
Verification

Trail of Bits
PUBLIC

We found no major issues related to cryptography. Satisfactory

Generally, Flux takes the necessary precautions when Satisfactory
validating most data types; however, we found that an

inappropriate string trimming function is used

(TOB-FLUX-2) and a minimum RSA public key bit size is

not validated (TOB-FLUX-8).

User-facing documentation is thorough, with getting- Satisfactory
started guides, setup examples, and API references. In

addition, the code contains fairly thorough comments.

Nevertheless, we recommend completing documentation

with warnings to users about potentially dangerous

options and their implications (e.g., passing a password

as a CLI argument).

While our assessment did not prioritize checking for Further
outdated third-party dependencies, our brief analysis of Investigation
certain components revealed outdated security-related Required

libraries. Implementing govulncheck could improve
maintenance efforts for Golang code.

Flux is written in Go, which reduces its exposure to Satisfactory
memory safety issues. However, we found a minor issue
related to an unhandled error value (TOB-FLUX-4).

The codebase is verified using various tests, including Further
fuzz tests. Due to the time constraints of the audit, we Investigation
did not evaluate the thoroughness of the tests. However, Required

we found that some functions do not work properly
(TOB-FLUX-1), which could be caught with the unit test
that covers the identified function. We also recommend
customizing a CodeQL GitHub workflow with a more
detailed security-and-quality query suite
(TOB-FLUX-4).

13 Flux Security Assessment

Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title

1 SetExpiration does not set the expiration for the
given key

2 Inappropriate string trimming function

3 Go's default HTTP client uses a shared value that
can be modified by other components

4 Unhandled error value

5 Potential implicit memory aliasing in for loops

6 Directories created via os.MkdirAll are not
checked for permissions

7 Directories and files created with overly lenient
permissions

8 No restriction on minimum SSH RSA public key bit
size

9 Flux macOS release binary susceptible to .dylib
injection

10 Path traversal in Securejoin implementation

Trail of Bits 14

PUBLIC

Type

Undefined
Behavior

Data Validation

Undefined
Behavior

Error Reporting

Undefined

Behavior

Access Controls

Configuration

Data Validation

Configuration

Data Validation

Severity

Low

Informational

Low

Informational

Informational

Informational

Informational

Informational

Low

Undetermined

Flux Security Assessment

Detailed Findings

1. SetExpiration does not set the expiration for the given key
Severity: Low Difficulty: High
Type: Undefined Behavior Finding ID: TOB-FLUX-1

Target: source-controller/internal/cache/cache.go#163-172

Description
The SetExpiration function does not change the expiration for the given key because it
does not store the updated item back in the specific cache item (figure 1.1).

The SetExpiration function retrieves the corresponding item from the cache and assigns
it to the itemvariable (figure 1.1, line 165). Then it updates the item’s expiration time by
setting its Expiration field to the current time plus the provided expiration duration
(figure 1.1, line 170). Finally, the lock on the cache is released without the prior cache
update (figure 1.1, line 171), so any subsequent access to the cache item with the given key
will not see the updated expiration set by SetExpiration.

163 func (¢ *cache) SetExpiration(key string, expiration time.Duration) {
164 c.mu.Lock()

165 item, ok := c.Items[key]

166 if lok {

167 c.mu.Unlock()

168 return

169 }

170 item.Expiration = time.Now().Add(expiration).UnixNano()

171 c.mu.Unlock()

172 }

Figure 1.1: The SetExpiration function responsible for setting the expiration for the given key
(source-controller/internal/cache/cache.go#163-172)

Exploit Scenario

A developer intentionally places sensitive data with a specific expiration date in the cache.
An attacker gains access to confidential information because the sensitive data has not
expired. This allows the attacker to further compromise the system.

Recommendations
Short term, explicitly assign the updated item variable back to the c.Items map before
releasing the lock (figure 1.2).

Trail of Bits 15 Flux Security Assessment
PUBLIC

https://github.com/fluxcd/source-controller/blob/7f40be76e90b2d4afe9f8f9d7f53ac719fe1205e/internal/cache/cache.go#L163-L172

func (c *cache) SetExpiration(key string, expiration time.Duration) {
c.mu.Lock()

if item, ok := c.Items[key]; ok {
item.Expiration = time.Now().Add(expiration).UnixNano()

c.Items[key] = item

}

c.mu.Unlock()

Figure 1.2: The proposed fix that updates the expiration time correctly

Long term, extend unit tests in the cache_test.go file to cover the SetExpiration
function.

Trail of Bits 16 Flux Security Assessment
PUBLIC

https://github.com/fluxcd/source-controller/blob/7f40be76e90b2d4afe9f8f9d7f53ac719fe1205e/internal/cache/cache_test.go

2. Inappropriate string trimming function

Severity: Informational Difficulty: High
Type: Data Validation Finding ID: TOB-FLUX-2
Target:

notification-controller/internal/server/receiver_handlers.go#71-77

Description

The handlePayload function fails to remove a specific substring as intended because its
implementation uses the strings. TrimLeft function (figure 2.1). The incoming HTTP
request URL (r .RequestURI) is passed to the strings.TrimLeft function with the
apiv1.ReceiverWebhookPath parameter, which is set to /hook (figure 2.1, line 74). The
goal is to remove this specific substring from r .RequestURI. However, due to the use of
strings.TrimLeft, all occurrences of the specified characters, instead of just the exact
substring, are removed from the left side of the string. Consequently, the handling request
path is incorrectly logged (figure 2.1, line 76).

71 func (s *ReceiverServer) handlePayload() func(w http.ResponseWriter, r
*http.Request) {

72 return func(w http.ResponseWriter, r *http.Request) {

73 ctx := context.Background()

74 digest := url.PathEscape(strings.TrimLeft(r.RequestURI,

apiv1.ReceiverWebhookPath)) // apiv1.ReceiverWebhookPath = “/hook”
75
76 s.logger.Info(fmt.Sprintf("handling request: %s", digest))
Figure 2.1: The use of strings. TrimLeft in the handlePayload function
(notification-controller/internal/server/receiver_handlers.go#71-77)

Recommendations
Short term, fix the handlePayload function to properly remove substrings from the
remote URL using strings.TrimPrefix function.

Long term, implement unit tests for all string-parsing functions. In the CI/CD pipeline,
introduce the golangci-1int tool that uses the Staticcheck tool with the SA1024 check.

Trail of Bits 17 Flux Security Assessment
PUBLIC

https://pkg.go.dev/strings#TrimLeft
https://github.com/fluxcd/notification-controller/blob/b80c2c4060f62af40c06fe2f6f3bef295ee56e43/internal/server/receiver_handlers.go#L71-L77
https://pkg.go.dev/strings#TrimPrefix
https://golangci-lint.run/
https://staticcheck.dev/
https://staticcheck.dev/docs/checks#SA1024

3. Go's default HTTP client uses a shared value that can be modified by other
components

Severity: Low Difficulty: High
Type: Undefined Behavior Finding ID: TOB-FLUX-3

Target: flux2/pkg/manifestgen/install/install.go#91-97,
flux2/pkg/manifestgen/install/install.go#118-125

Description

Go's default HTTP client uses a shared http.DefaultClient value that can be modified
by other application components, which leads to unexpected behavior. In the case of Flux,
the issue arises in the GetLatestVersion and ExistingVersion functions, where the
timeout is modified.

91 // GetlLatestVersion calls the GitHub API and returns the latest released version
92 func GetLatestVersion() (string, error) {

93 ghURL := "https://api.github.com/repos/fluxcd/flux2/releases/latest"
94 c := http.DefaultClient

95 c.Timeout = 15 * time.Second

96

97 res, err := c.Get(ghURL)

Figure 3.1: The GetLatestVersion function that uses http.DefaultClient
(flux2/pkg/manifestgen/install/install.go#91-97)

118 func ExistingVersion(version string) (bool, error) {

123 ghURL :=
fmt.Sprintf("https://api.github.com/repos/fluxcd/flux2/releases/tags/%s", version)
124 c := http.DefaultClient

125 c.Timeout = 15 * time.Second

Figure 3.2: The ExistingVersion function that uses http.DefaultClient
(flux2/pkg/manifestgen/install/install.go#118-125)

Exploit Scenario

An attacker introduces a malicious library into the Flux codebase that can modify the
shared http.DefaultClient value. By manipulating this value, the attacker orchestrates
DosS attacks, disrupting the software’s normal operation.

Trail of Bits 18 Flux Security Assessment
PUBLIC

https://github.com/fluxcd/flux2/blob/44d69d6fc0c353e79c1bad021a4aca135033bce8/pkg/manifestgen/install/install.go#L91-L97C26
https://github.com/fluxcd/flux2/blob/44d69d6fc0c353e79c1bad021a4aca135033bce8/pkg/manifestgen/install/install.go#L118-L125C30

Recommendations

Short term, avoid using the shared http.DefaultClient value and instead use the
go-cleanhttp package to ensure that the HTTP client configuration remains unaffected
by other parts of the application.

Long term, periodically audit other global values that may impact different components
within Flux.

References
e hashicorp/go-cleanhttp—wrapping functions for accessing "clean" Go
http.Client values

e PoC showing shared global variable used by the default HTTP client

Trail of Bits 19 Flux Security Assessment
PUBLIC

https://pkg.go.dev/github.com/hashicorp/go-cleanhttp
https://github.com/hashicorp/go-cleanhttp
https://github.com/hashicorp/go-cleanhttp
https://go.dev/play/p/I9GMcskDyiA

4. Unhandled error value
Severity: Informational Difficulty: High
Type: Error Reporting Finding ID: TOB-FLUX-4

Target: flux2/cmd/flux/events.go#129-138

Description
The eventsCmdRun function in the flux2 repository ignores an error value returned by a
call to the getRows function. This can result in incorrect error reporting to the user.

129 rows, err := getRows(ctx, kubeclient, clientlListOpts, refListOpts,

showNamespace)

130 if len(rows) == 0 {

131 if eventArgs.allNamespaces {

132 logger.Failuref("No events found.")
133 } else {

134 logger.Failuref("No events found in %s namespace.",
*kubeconfigArgs.Namespace)

135 }

136

137 return nil

138 }

Figure 4.1: Ignored err value (f1ux2/cmd/flux/events.go#129-138)

The getRows function returns a nil value in the rows variable whenever it returns an
error, which means the if statement’s condition on line 130 will be satisfied. The if
statement body will incorrectly report to the user that no events were found, rather than
printing the err value.

Recommendations

Short term, add an err !=nil check and modify the eventsCmdRun function to handle
error values accordingly (print an error message and then return err), as shown in the
following figure:

rows, err := getRows(ctx, kubeclient, clientListOpts, refListOpts, showNamespace)
if err !'= nil {

logger.Failuref("Error while getting rows: %s", err)

return err
}
if len(rows) == 0 {

if eventArgs.allNamespaces {

logger.Failuref("No events found.")

Trail of Bits 20 Flux Security Assessment
PUBLIC

https://github.com/fluxcd/flux2/blob/44d69d6fc0c353e79c1bad021a4aca135033bce8/cmd/flux/events.go#L129-L138

} else {
logger.Failuref("No events found in %s namespace.",

*kubeconfigArgs.Namespace)

}

return nil
Figure 4.2: Fixed code snippet

Long term, ensure that there are no other places in the Flux codebase where error values
are ignored. Adding CodeQL to the project CI/CD with the queries:
security-and-quality option will allow the go/useless-assignment-to-local
query to catch similar issues.

Trail of Bits 21 Flux Security Assessment
PUBLIC

https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/customizing-code-scanning#:~:text=%23%20security%2Dextended%20or%20security%2Dand%2Dquality.%0A%20%20%20%20queries%3A%20security%2Dextended
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/customizing-code-scanning#:~:text=%23%20security%2Dextended%20or%20security%2Dand%2Dquality.%0A%20%20%20%20queries%3A%20security%2Dextended

5. Potential implicit memory aliasing in for loops
Severity: Informational Difficulty: High
Type: Undefined Behavior Finding ID: TOB-FLUX-5

Target: Various locations

Description

Throughout the Flux codebase, loop range values are passed by reference to functions.
This reference is unstable and is updated at each iteration of the for loop. Here are two
examples:

resource := range resources.Items {
if err := s.annotate(ctx, &resource); err != nil {

for

Figure 5.1: Example of memory aliasing in a for loop
(notification-controller/internal/server/receiver_handlers.go#411-412)

i := range list.Items {
if !bucket.GetArtifact().HasRevision(i.Status.ObservedSourceArtifactRevision)

for

{

reqs = append(reqs, reconcile.Request{NamespacedName:
client.ObjectKeyFromObject(&i)})
Figure 5.2: Example of memory aliasing in a for loop
(source-controller/internal/controller/helmchart_controller.go#1312-1314)

We did not find any examples where this results in a security problem. However, it is
generally a very unsafe practice; if any of these function calls preserved their input values
(e.g., by storing them in structs), the stored value would be changed while the for loop was
iterating.

A full list of occurrences of this issue can be found in appendix D.

Recommendations
Short term, replace these references with more permanent ones. Here are two possible
ways to do this:

for i, v := range 1 {
// option 1: reference the entry in the list
// the reference still only lasts as long as the list does

Trail of Bits 22 Flux Security Assessment
PUBLIC

https://github.com/fluxcd/notification-controller/blob/b80c2c4060f62af40c06fe2f6f3bef295ee56e43/internal/server/receiver_handlers.go#L411-L412
https://github.com/fluxcd/source-controller/blob/9ff98d9c3d3a673f07705f877c297ad40c2241d5/internal/controller/helmchart_controller.go#L1312-L1314

foo(&1[1])
// option 2: copy the value before calling the function

vClone := v
foo(&vClone)

Figure 5.3: Safer ways to pass a reference to a function

Long term, implement the gosec tool in the project CI/CD to catch potential issues with
Golang.

References
e Beware of Implicit Memory Aliasing in Go For Loop

Trail of Bits 23 Flux Security Assessment
PUBLIC

https://github.com/securego/gosec
https://husni.dev/beware-of-implicit-memory-aliasing-in-go-foor-loop/

6. Directories created via os.MkdirAll are not checked for permissions
Severity: Informational Difficulty: High
Type: Access Controls Finding ID: TOB-FLUX-6

Target: Various locations

Description

Flux creates certain directory paths with specific access permissions by using the

0s .MkdirAll function. This function does not perform any permission checks when a
given directory path already exists. This would allow a local attacker to create a directory
with broad permissions before Flux could create the directory with narrower permissions,
possibly allowing the attacker to later tamper with the files.

A full list of occurrences of this issue can be found in appendix D.

Exploit Scenario

Eve has unprivileged access to a container running a Flux controller. Eve introduces new
directories or paths with 8777 permissions before the Flux code does so. Eve then deletes
and forges files in that directory to change the result of further code executed by the Flux
controller.

Recommendations

Short term, when using functions such as os .MkdirAll, os.WriteFile, or
outil.WriteFile, check all directories in the path and validate their owner and
permissions before performing operations on them. This will help avoid situations where
sensitive information is written to a preexisting attacker-controlled path.

Long term, enumerate files and directories for their expected permissions, and build
validation to ensure appropriate permissions are applied before creation and upon use.
Ideally, this validation should be centrally defined and used throughout the application as a
whole.

Trail of Bits 24 Flux Security Assessment
PUBLIC

7. Directories and files created with overly lenient permissions
Severity: Informational Difficulty: High
Type: Configuration Finding ID: TOB-FLUX-7

Target: Various locations

Description

Flux creates various directories and files with overly lenient permissions. This would allow
an attacker with unprivileged access to edit, delete, and read files, interfering with Flux
controllers’ operations.

if err := os.MkdirAll(abs, 00755); err !'= nil {

Figure 7.1: Example of a directory created with overly lenient permissions
(pkg/tar/tar.go#167)

err = os.WriteFile(path, out, 00644)

Figure 7.2: Example of a file created with overly lenient permissions
(kustomize-controller/internal/decryptor/decryptor.go#5605)

A full list of occurrences of this issue can be found in appendix D.

Recommendations

Short term, generally use permissions of 8750 or less for directories and 0600 or less for
files.

Long term, enumerate files and directories for their expected permissions overall, and
build validation to ensure appropriate permissions are applied before creation and upon

use. Ideally, this validation should be centrally defined and used throughout the application
as a whole.

Trail of Bits 25 Flux Security Assessment
PUBLIC

https://github.com/fluxcd/pkg/blob/2a323d771e17af02dee2ccbbb9b445b78ab048e5/tar/tar.go#L167
https://github.com/fluxcd/kustomize-controller/blob/8d9a1811655fff9a093f9c98397e2ed806876f10/internal/decryptor/decryptor.go#L505

8. No restriction on minimum SSH RSA public key bit size
Severity: Informational Difficulty: High
Type: Data Validation Finding ID: TOB-FLUX-8

Target: flux2/internal/flags/rsa_key_bits.go

Description

Flux does not restrict a user from creating a Kubernetes secret for Git authentication using
a dangerous SSH RSA public key bit size (figure 8.1). A user can create a configuration with a
16-bit key size (figure 8.2), which is insecure because an attacker can easily brute force the
correct private key that matches the public key.

var defaultRSAKeyBits = 2048
type RSAKeyBits int

/1 (...)
func (b *RSAKeyBits) Set(str string) error {
if strings.TrimSpace(str) == "" {
*b = RSAKeyBits(defaultRSAKeyBits)
return nil
}
bits, err := strconv.Atoi(str)
if err !'= nil {
return err
}

if bits == 0 || bits%8 != 08 {
return fmt.Errorf("RSA key bit size must be a multiples of 8")
}
*b = RSAKeyBits(bits)
return nil

Figure 8.1: The Set function responsible for the --ssh-rsa-bits parameter validation
(flux2/internal/flags/rsa_key_bits.go#25-47)

$ flux create secret git podinfo-auth \
--url=ssh://git@github.com/stefanprodan/podinfo \
--export --ssh-rsa-bits 16 --ssh-key-algorithm=rsa
apiVersion: vi1
kind: Secret
metadata:
name: podinfo-auth
namespace: flux-system
stringData:

Trail of Bits 26 Flux Security Assessment
PUBLIC

https://github.com/fluxcd/flux2/blob/44d69d6fc0c353e79c1bad021a4aca135033bce8/internal/flags/rsa_key_bits.go#L25-L47

identity: |

MDoCAQAWDQYJKoZIhvcNAQEBBQAEJ jAKAGEAAGMASDKCAWEAAQICMZECAGD1AGIA
XQICAJUCAQCRAgGFd
————— END PRIVATE KEY-----
identity.pub: |
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAAAAWCWOQ==
Figure 8.2: The f1ux command to create a Kubernetes secret for Git

authentication using a 16-bit RSA public key

Recommendations
Short term, implement a strict minimum requirement of 1024 bits for the SSH RSA public

key size. This will ensure that users cannot create Kubernetes secrets with dangerously
small key sizes, such as the 16-bit example shown in figure 8.2. By enforcing a larger key
size, the system's security will significantly improve because it will be much more resistant

to brute-force attacks.

Long term, periodically review other Flux arguments to ensure they do not allow insecure
configurations.

Trail of Bits 27 Flux Security Assessment
PUBLIC

9. Flux macOS release binary susceptible to .dylib injection
Severity: Low Difficulty: High
Type: Configuration Finding ID: TOB-FLUX-9

Target: flux process

Description

The Flux macOS release binary does not have Hardened Runtime restrictions enabled
(figure 9.1), making the binary vulnerable to a .dylib file injection attack. A .dylib injection
attack allows an attacker to inject a custom dynamic library (.dylib) into a process,
potentially leading to, for example, unauthorized access to sensitive information.

$ brew install fluxcd/tap/flux
$ codesign -dvvv “which flux®
/usr/local/bin/flux: code object is not signed at all

Figure 9.1: Installing the official release of Flux by Homebrew and using the codesign tool to
check whether the binary has the kSecCodeSignatureEnforcement flag enabled

$ cat inj.c

#include <stdio.h>

// The constructor attribute causes the function to be called automatically before
before main() is called

__attribute__((constructor))

static void customConstructor(int argc, const char **argv)

{

}
Exporting the DYLD_INSERT_LIBRARIES environment variable to inject dynamic

libraries into other running processes

$ export DYLD_INSERT_LIBRARIES= pwd'/inj.dylib

$ flux

Successfully injected dylib

Command line utility for assembling Kubernetes CD pipelines the GitOps way.

(...)

printf("Successfully injected dylib\n");

Figure 9.2: The proof of concept showing that the custom .dylib file can
be successfully injected into the f1ux process

Exploit Scenario

An attacker gains access to a target user's machine and crafts a malicious .dylib to steal
passwords from the standard Flux input. Then the attacker sets the
DYLD_INSERT_LIBRARIES environment variable in the .zshrc file to the path of the crafted

Trail of Bits 28 Flux Security Assessment
PUBLIC

https://developer.apple.com/documentation/security/hardened_runtime
https://developer.apple.com/documentation/security/seccodesignatureflags/kseccodesignatureenforcement

.dylib. The user executes the flux bootstrap github command with the --token-auth
parameter and provides a GitHub personal access token through standard input. As a
result, the hijacked access token is sent to the attacker.

Recommendations

Short term, sign the release macOS Flux binaries and verify that the code signature flags
include the kSecCodeSignatureEnforcement flag to ensure the Hardened Runtime
protects the binary. The code signature flags are displayed in the CodeDirectory line
when running the codesign command (figure 9.3):

e A 0x0 flag indicates that the binary has a standard code signature without additional
features.

e A0x10000 flag (kSecCodeSignatureEnforcement) indicates that the application
has implemented runtime hardening policies.

$ codesign -dvvv “which kubectl®
Executable=/Applications/Docker.app/Contents/Resources/bin/kubectl
Identifier=kubectl

Format=Mach-0 thin (x86_64)

CodeDirectory v=20500 size=431283 flags=0x10000(runtime) hashes=13472+2
location=embedded

Figure 9.3: An example that uses the codesign tool to show a hardened kubect1 binary

Long term, implement automatic checks in the project CI/CD pipeline to ensure the release
binary has Hardened Runtime restrictions enabled.

References
e DYLIB Injection in Golang apps on Apple silicon chips

e A Deep Dive into Penetration Testing of macOS Applications (Part 2)

Trail of Bits 29 Flux Security Assessment
PUBLIC

https://www.form3.tech/engineering/content/dylib-injection-in-golang-apps
https://www.cyberark.com/resources/threat-research-blog/a-deep-dive-into-penetration-testing-of-macos-applications-part-2

10. Path traversal in SecureJoin implementation
Severity: Undetermined Difficulty: Undetermined
Type: Data Validation Finding ID: TOB-FLUX-10

Target: pkg/git/gogit/fs/join.go

Description

The SecureJoinVFS function in pkg/git/gogit/fs is meant to join two paths, root and
unsafePath, with the condition that the returned path must be scoped within root.
However, it is possible for an attacker to cause the function to return a path outside the
root directory by crafting a symlink in the root directory. This compromises the methods
on the 0S struct in the pkg/git/gogit/fs library.

Here is a portion of the code for SecureJoinVFS:

99 // Absolute symlinks reset any work we've already done.
100 if filepath.IsAbs(dest) {
101 if !'fi.IsDir() && strings.HasPrefix(dest,
root+string(filepath.Separator)) {
102 return filepath.Clean(dest), nil
103 }
104 path.Reset()
105 }

Figure 10.1: Code snippet from SecureJoinVFS (pkg/git/gogit/fs/join.go#L99-L105)

The if statements on lines 100 and 101 check that dest (the destination of a symlink) is an
absolute path that has root/ as a prefix. In this case, dest is returned. However, it is
possible for dest to both begin with root/ and not be a child of root. For instance,
/tmp/rootDir/../a.txt begins with /tmp/rootDir/ butis not a descendent of
/tmp/rootDir/ (it resolves to /tmp/a.txt).

Here is a proof of concept showing how an attacker could write to a file outside the root
directory:

$ # STATE OF THE FILESYSTEM BEFORE MAIN.GO IS RUN; NOTE THE SYMLINK IN ROOTDIR

$ pwd
/tmp/poc

$ 1s -1 rootDir
total ©

Trail of Bits 30 Flux Security Assessment
PUBLIC

https://github.com/fluxcd/pkg/blob/2a323d771e17af02dee2ccbbb9b445b78ab048e5/git/gogit/fs/join.go#L99-L105

lrwxr-xr-x 1 sam wheel 42 Aug 2 17:25 file.txt -»>
/tmp/poc/rootDir/../unrelatedDir/pwned. txt

$ 1s -1 unrelatedDir
total ©

$ # MAIN.GO SHOULD LEAVE EVERYTHING OUTSIDE OF ROOTDIR UNTOUCHED, SINCE IT USES THE
SECURE FILE SYSTEM

$ cat main.go
package main

import ("fmt"
"github.com/fluxcd/pkg/git/gogit/fs"
"os")

func main() {
// Secure file system rooted in rootDir
my_os := fs.New("/tmp/poc/rootDir")

// Open file.txt and write “hello” to it; shouldn’'t affect anything outside
of rootDir
f, err := my_os.OpenFile("file.txt", os.O_APPEND|os.0_CREATE|os.O_WRONLY,

0600)
if err !'= nil {
fmt.Println(err)
return
}
_, err = f.Write([]byte("hello\n"))
if err '= nil {
fmt.Println(err)
return
}
err = f.Close()
if err !'= nil {
fmt.Println(err)
return
}
// To indicate that we haven’t hit any errors
fmt.Println("success"
}

$ go run main.go
success

$ 1s -1 rootDir

total ©

Irwxr-xr-x 1 sam wheel 42 Aug 2 17:25 file.txt ->
/tmp/poc/rootDir/../unrelatedDir/pwned. txt

$ 1s -1 unrelatedDir
total 8

Trail of Bits 31 Flux Security Assessment
PUBLIC

-rw------- 1 sam wheel 6 Aug 2 17:27 pwned.txt

$ cat unrelatedDir/pwned.txt
hello

S # A file in unrelatedDir got written to because of the malicious symlink

Figure 10.2: Proof of concept to demonstrate breaking out of SecureJdoin root directory

This issue will be high severity when the pkg/git/gogit/fs libraryis considered on its
own because its main security guarantee is that it should not be possible to read or write
outside the root directory. However, due to the time-boxed nature of this audit, we did not
determine whether there is a way to exploit this vulnerability to affect Flux as a whole.

Recommendations

Short term, remove the return statement in figure 10.1, line 102; the loop should continue
even when a symlink with an absolute path is hit, and the return statement at the end of
the function (line 114) is not susceptible to this vulnerability.

Long term, expand unit tests to catch similar issues.

Trail of Bits 32 Flux Security Assessment

PUBLIC

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category

Access Controls
Auditing and Logging
Authentication
Configuration
Cryptography

Data Exposure

Data Validation
Denial of Service
Error Reporting
Patching

Session Management
Testing

Timing

Undefined Behavior

Trail of Bits
PUBLIC

Description

Insufficient authorization or assessment of rights
Insufficient auditing of actions or logging of problems
Improper identification of users

Misconfigured servers, devices, or software components
A breach of system confidentiality or integrity
Exposure of sensitive information

Improper reliance on the structure or values of data
A system failure with an availability impact

Insecure or insufficient reporting of error conditions
Use of an outdated software package or library
Improper identification of authenticated users
Insufficient test methodology or test coverage

Race conditions or other order-of-operations flaws

Undefined behavior triggered within the system

33 Flux Security Assessment

Severity Levels
Severity

Informational

Undetermined
Low

Medium

High

Description

The issue does not pose an immediate risk but is relevant to security best
practices.

The extent of the risk was not determined during this engagement.
The risk is small or is not one the client has indicated is important.

User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels
Difficulty
Undetermined

Low
Medium

High

Trail of Bits
PUBLIC

Description
The difficulty of exploitation was not determined during this engagement.

The flaw is well known; public tools for its exploitation exist or can be
scripted.

An attacker must write an exploit or will need in-depth knowledge of the
system.

An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

34 Flux Security Assessment

B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category
Arithmetic
Auditing

Authentication /
Access Controls

Complexity
Management

Configuration
Cryptography and
Key Management
Data Handling
Documentation
Maintenance

Memory Safety

and Error Handling

Testing and
Verification

Description
The proper use of mathematical operations and semantics
The use of event auditing and logging to support monitoring

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

The configuration of system components in accordance with best
practices

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

The safe handling of user inputs and data processed by the system
The presence of comprehensive and readable codebase documentation
The timely maintenance of system components to mitigate risk

The presence of memory safety and robust error-handling mechanisms

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

Rating Criteria
Rating

Strong
Satisfactory

Moderate

Trail of Bits
PUBLIC

Description
No issues were found, and the system exceeds industry standards.
Minor issues were found, but the system is compliant with best practices.

Some issues that may affect system safety were found.

35 Flux Security Assessment

I Weak Many issues that affect system safety were found.
I Missing A required component is missing, significantly affecting system safety.

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further Further investigation is required to reach a meaningful conclusion.
Investigation
Required

Trail of Bits 36 Flux Security Assessment

PUBLIC

C. Non-Security-Related Findings

This appendix contains findings that do not have immediate or obvious security
implications. However, they may facilitate exploit chains targeting other vulnerabilities or
may become easily exploitable in future releases.

1.

Case-insensitive string comparison is done using strings.ToLower function
and == operator. This results in a significant increase in both computational and
memory complexity. This is because strings.ToLower will allocate a new string
and compute the full lowercase version of the string, even if the first characters of
the strings do not match. Use strings.EqualFold for comparing strings instead.
Also, add the Staticcheck tool with the SA6085 check to the CI/CD to identify similar
issues.

if strings.TolLower(event) == strings.ToLower(e) {

Figure C.1: Example of case-insensitive string comparison using strings. ToLower
(notification-controller/internal/server/receiver_handlers.go#167)

The above file includes three instances of this type of comparison. We did not find
this issue anywhere in the codebase aside from this file.

Useless assignment. The following assignment has no effect since the function
returns immediately afterward and can be removed.

template = template[1:]
return fmt.Errorf("--filter-extract is malformed")
Figure C.2: Useless assignment
(flux2/cmd/flux/create_image_policy.go#186-187)

Calling defer in a for loop. Using a defer statement inside a for loop could
cause unexpected conditions because the deferred function is called when the
function exits, not at the end of each loop iteration. Delete the temporary directory
at the end of the loop instead of using defer.

for obj := range objects {
/1 (...)

defer cleanupDir(tmpDir)
Figure C.3: Using defer in a for loop (flux2/internal/build/diff.go#89-119)

-

Use of two different, nearly identical, SecureJoin functions. The
pkg/git/gogit/fs/osfs_os.go file uses both pkg/git/gogit/fs.Securedoin

Trail of Bits 37 Flux Security Assessment
PUBLIC

https://staticcheck.dev/
https://staticcheck.dev/docs/checks#SA6005
https://github.com/fluxcd/notification-controller/blob/b80c2c4060f62af40c06fe2f6f3bef295ee56e43/internal/server/receiver_handlers.go#L167
https://github.com/fluxcd/flux2/blob/44d69d6fc0c353e79c1bad021a4aca135033bce8/cmd/flux/create_image_policy.go#L186-L187
https://github.com/fluxcd/flux2/blob/44d69d6fc0c353e79c1bad021a4aca135033bce8/internal/build/diff.go#L89-L119

and github.com/cyphar/filepath-securejoin.SecureJoin, which have
nearly identical implementations.

func (fs *0S) Chroot(path string) (billy.Filesystem, error) {

joined, err := securejoin.SecureJoin(fs.workingDir, path)
if err !'= nil {
return nil, err
}
return New(joined), nil
}
/1 (...)
func (fs *0S) abs(filename string) (string, error) {
if filename == fs.workingDir {
filename = "/"

} else if strings.HasPrefix(filename,

fs.workingDir+string(filepath.Separator)) {
filename = strings.TrimPrefix(filename,

fs.workingDir+string(filepath.Separator))

}

return Securedoin(fs.workingDir, filename)

Figure C.4: Use of two SecuredJoin functions from different packages that have the
same implementation (pkg/git/gogit/fs/osfs_os.go#218-263)

5. Use of the filepath.Join function followed by the insideWorkingDirEval
function instead of SecureJoin. The Lstat and Readlink functions in the
pkg/git/gogit/fs/osfs_os.go file use filepath.Join to join two directories
and then call insideWorkingDirEval to ensure that the resulting path is within
the root directory. However, this is what the SecureJoin function does; the logic
should be simplified to a single SecureJoin call, and the insideWorkingDirEval
and insideWorkingDir helper functions should be removed.

Trail of Bits 38 Flux Security Assessment
PUBLIC

https://github.com/fluxcd/pkg/blob/2a323d771e17af02dee2ccbbb9b445b78ab048e5/git/gogit/fs/osfs_os.go#L218-L263
https://github.com/fluxcd/pkg/blob/2a323d771e17af02dee2ccbbb9b445b78ab048e5/git/gogit/fs/osfs_os.go#L196-L205
https://github.com/fluxcd/pkg/blob/2a323d771e17af02dee2ccbbb9b445b78ab048e5/git/gogit/fs/osfs_os.go#L207-L215
https://github.com/fluxcd/pkg/blob/2a323d771e17af02dee2ccbbb9b445b78ab048e5/git/gogit/fs/osfs_os.go
https://github.com/fluxcd/pkg/blob/2a323d771e17af02dee2ccbbb9b445b78ab048e5/git/gogit/fs/osfs_os.go#L277-L293
https://github.com/fluxcd/pkg/blob/2a323d771e17af02dee2ccbbb9b445b78ab048e5/git/gogit/fs/osfs_os.go#L265-L275

D. Issue Occurrences

Here is a full list of locations affected by TOB-FLUX-5:

source-controller/internal/controller/helmchart_controller.go:131

4

source-controller/internal/controller/helmchart_controller.go:128

4

source-controller/internal/controller/helmchart_controller.go:125

4

notification-controller/internal/server/receiver_handlers.go:412

notification-controller/internal/server/event_handlers.go:127

notification-controller/internal/server/event_handlers.go:69

notification-controller/internal/server/event_handlers.go:65

notification-controller/internal/controller/alert_controller.go:2

06

flux2/pkg/uninstall/uninstall

flux2/pkg/uninstall/uninstall.
flux2/pkg/uninstall/uninstall.
flux2/pkg/uninstall/uninstall.
flux2/pkg/uninstall/uninstall.
flux2/pkg/uninstall/uninstall.
flux2/pkg/uninstall/uninstall.
flux2/pkg/uninstall/uninstall.
flux2/pkg/uninstall/uninstall.
flux2/pkg/uninstall/uninstall.

flux2/pkg/uninstall/uninstall.

flux2/pkg/uninstall/uninstall

Trail of Bits
PUBLIC

.go

go

go

go

go

go

go

go

go

.go:

39

go:

go:

:328

1307

1293

1279

1265

1251

1237

1223

1209

195

181

167

Flux Security Assessment

flux2/pkg/uninstall/uninstall.
flux2/pkg/uninstall/uninstall.
flux2/pkg/uninstall/uninstall.
flux2/pkg/uninstall/uninstall.
flux2/pkg/uninstall/uninstall.
flux2/pkg/uninstall/uninstall.
flux2/pkg/uninstall/uninstall.

flux2/pkg/uninstall/uninstall.

go

go

go

go:

go:

go:

go:

go:

153

139

117

104

191

178

165

52

Here is a full list of locations affected by TOB-FLUX-6:

flux2/pkg/manifestgen/manifest.go:46

flux2/pkg/manifestgen/install/manifests.go:95

source-controller/internal/controller/storage.go:125

source-controller/internal/controller/storage.go:614

source-controller/internal/fs/fs.go:90

source-controller/pkg/azure/blob.go:228

source-controller/pkg/gcp/gcp.go:121

pkg/oci/client/internal/fs/fs.go:90

pkg/tar/tar.go:119

pkg/tar/tar.go:167

pkg/git/gogit/fs/osfs_os.go:130

pkg/git/gogit/fs/osfs_os.go:242

Here is a full list of locations affected by TOB-FLUX-7:

kustomize-controller/internal/decryptor/decryptor.go:505

flux2/internal/build/diff.go:176

Trail of Bits
PUBLIC

40

Flux Security Assessment

e flux2/internal/build/diff.go:170

e flux2/cmd/flux/manifests.embed.go:41
e pkg/testserver/artifact.go:170

e pkg/oci/client/build.go:148

e pkg/tar/tar.go:167

e pkg/tar/tar.go:119

e pkg/helmtestserver/server.go:66

e pkg/git/internal/e2e/utils.go:274

Trail of Bits 41 Flux Security Assessment
PUBLIC

E. Automated Static Analysis

This appendix describes the setup of the automated analysis tools used during this audit.

Though static analysis tools frequently report false positives, they detect certain categories
of issues, such as memory disclosures, misspecified format strings, and the use of unsafe
APIs, with essentially perfect precision. We recommend periodically running these static
analysis tools and reviewing their findings.

golangci-lint
We installed the golangci-1lint tool by following the installation guide.

To analyze the codebase using golangci-1lint, we navigated to the root directory of the
target and executed the following command:

golangci-lint run --enable-all

If the --enable-all option is too noisy, specific linters can be disabled using the -D
<name_of_linter> option. Itis also possible to run only selected linters using the
--disable-all -E <gosec | staticcheck | nakedret | ...other_linters> option.

Some underlying linters may require a successful build of the Go project. They may silently
ignore Go packages that are not yet built or have failing builds.

Semgrep

To install Semgrep, we used pip by running python3 -m pip install semgrep.

To run Semgrep on the codebase, we ran the following command in the root directory of
the project (running multiple predefined rules simultaneously by providing multiple
--config arguments):

semgrep --config "p/trailofbits" --config "p/ci" --config
"p/security-audit" --config "p/semgrep-go-correctness"”
--metrics=off

Semgrep Pro Engine includes cross-file (interfile) and cross-function (interprocedural)
analysis. To run Semgrep with the Pro Engine, we used the following commands:

semgrep login
semgrep install-semgrep-pro
semgrep --pro --config "p/default” --metrics off

We recommend integrating Semgrep into the project's CI/CD pipeline. To thoroughly
understand the Semgrep tool, refer to our Trail of Bits Testing Handbook, where we aim to

Trail of Bits 42 Flux Security Assessment
PUBLIC

https://golangci-lint.run/usage/install/
https://appsec.guide/docs/static-analysis/semgrep/

streamline Semgrep use and improve security testing effectiveness. Also, consider doing
the following:

e Limit Semgrep to show results of only error-level severity by using the --severity
ERROR flag.

e Focus first on rules with high confidence and medium- or high-impact metadata.

e Use the SARIF format (by using the --sarif Semgrep argument) with the SARIF
Viewer for Visual Studio Code extension. This will make it easier to review the
analysis results and drill down into specific issues to understand their impact and
severity.

CodeQL
We installed CodeQL by following CodeQL's installation guide.

Next, we ran the following command to create the project database for the Golang
repository:

codeql database create codeql.db --language=go
We then ran the following command to query the database:

codeql database analyze codeql.db -j 10 --format=csv
--output=codeql_tob_go.csv -- go-developer-happiness go-lgtm-full
go-security-and-quality go-security-experimental

We also used private Trail of Bits query packs.

TruffleHog

We used TruffleHog to detect sensitive data such as private keys and API tokens in the
repositories’ Git histories.

To detect sensitive information in the fluxcd GitHub organization, we used the following
command:

trufflehog github --org=fluxcd --only-verified

The --only-verified flag specifies that only findings marked as "verified" should be
included in the scan results. This helps filter out false positives and focuses on confirmed
instances of sensitive information.

Trail of Bits 43 Flux Security Assessment
PUBLIC

https://marketplace.visualstudio.com/items?itemName=MS-SarifVSCode.sarif-viewer
https://marketplace.visualstudio.com/items?itemName=MS-SarifVSCode.sarif-viewer
https://codeql.github.com/docs/codeql-cli/getting-started-with-the-codeql-cli/
https://github.com/trufflesecurity/trufflehog

F. Fix Review Results

When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
identified in the original report. This work involves a review of specific areas of the source
code and system configuration, not comprehensive analysis of the system.

On October 20, 2023, Trail of Bits reviewed the fixes and mitigations implemented by the
Flux team for the issues identified in this report. We reviewed each fix to determine its
effectiveness in resolving the associated issue.

In summary, of the 10 issues described in this report, Flux has resolved seven issues, has
partially resolved one issue, and has not resolved the remaining two issues. For additional
information, please see the Detailed Fix Review Results below.

ID Title Status

1 SetExpiration does not set the expiration for the given key Resolved
2 Inappropriate string trimming function Resolved
3 Go's default HTTP client uses a shared value that can be modified by Resolved

other components

4 Unhandled error value Resolved

5 Potential implicit memory aliasing in for loops Resolved

6 Directories created via os.MkdirAll are not checked for permissions Unresolved

7 Directories and files created with overly lenient permissions Partially
Resolved

8 No restriction on minimum SSH RSA public key bit size Resolved

9 Flux macOS release binary susceptible to .dylib injection Unresolved

Trail of Bits 44 Flux Security Assessment

PUBLIC

10 Path traversal in Securejoin implementation Resolved

Trail of Bits 45 Flux Security Assessment
PUBLIC

Detailed Fix Review Results

TOB-FLUX-1: SetExpiration does not set the expiration for the given key

Resolved in PR #1185 on the source-controller repository. This PR adds a statement
that reassigns the relevant index in the c.Items map, allowing the modified expiration
value to be preserved.

TOB-FLUX-2: Inappropriate string trimming function
Resolved in PR #590 on the notification-controller repository. This PR replaces the
call to the strings.TrimLeft function with a call to the strings.TrimPrefix function.

TOB-FLUX-3: Go's default HTTP client uses a shared value that can be modified by
other components

Resolved in PR #4182 on the flux2 repository. This PR modifies the relevant code to use
the default client provided by the hashicorp/go-cleanhttp library. Unlike the default
client provided by Go's http library, this client does not share the global state with other
clients.

TOB-FLUX-4: Unhandled error value
Resolved in PR #4181 on the flux2 repository. This PR adds a check on the error value
returned by the getRows function.

TOB-FLUX-5: Potential implicit memory aliasing in for loops

Resolved in PR #1257 on the source-controller repository, PR #627 on the
notification-controller repository, and PR #4329 on the flux2 repository. These
PRs fix the implicit memory aliasing problems, sometimes by copying list elements and
sometimes by passing references to list elements (instead of to loop variables).

TOB-FLUX-6: Directories created via os.MkdirAll are not checked for permissions
Unresolved. OSTIF provided the following context for this finding's fix status:

We have analyzed the occurrences and concluded that they all target paths within
directories created using os.MkdirTemp.

Since multiple programs or goroutines invoking this function simultaneously won't select
the same or preexisting directory, and the directory's existence is short-lived, any
potential exploit would need to be time-based and meticulously crafted to run in parallel
with the program'’s execution.

Although we experimented with a solution like https://github.com/hiddeco/safeos, we
have determined that the combination of the above approach and the environment in
which our applications operate doesn't justify the maintenance and cost associated with
such a solution.

Trail of Bits 46 Flux Security Assessment
PUBLIC

https://github.com/fluxcd/source-controller/pull/1185
https://github.com/fluxcd/notification-controller/pull/590
https://github.com/fluxcd/flux2/pull/4182
https://github.com/fluxcd/flux2/pull/4181
https://github.com/fluxcd/source-controller/pull/1257
https://github.com/fluxcd/notification-controller/pull/627
https://github.com/fluxcd/flux2/pull/4329
https://github.com/hiddeco/safeos

TOB-FLUX-7: Directories and files created with overly lenient permissions
Partially resolved in PR #663 on the pkg repository. This PR fixes the occurrence of this
issue in the pkg/git/internal/e2e/utils.go file. However, the other occurrences of
this issue (see appendix D) remain unresolved.

OSTIF provided the following context for this finding's fix status:

Some overly lenient permissions persist because imposing breaking changes, such as
revisions derived from file checksums, could create issues for downstream consumers.
We are committed to resolving these in an upcoming minor release where feasible.

TOB-FLUX-8: No restriction on minimum SSH RSA public key bit size
Resolved in PR #4177 on the flux2 repository. This PR adds a strict minimum of 1024 bits
for the RSA public key size.

TOB-FLUX-9: Flux macOS release binary susceptible to .dylib injection
Unresolved. OSTIF provided the following context for this finding's fix status:

We are currently in the challenging process (for an open-source project) of obtaining an
Apple Developer Account to enable us to leverage a solution such as quill
(https://github.com/anchore/quill) for code signing and notarization of our macOS
binaries.

Once we secure this account, we are committed to implementing this with high priority.

TOB-FLUX-10: Path traversal in Securejoin implementation

Resolved in PR #650 on the pkg repository and PR #31 on the go-billy/osfs repository.
PR #650 removes the pkg/git/gogit/fs library and replaces references to it with
references to its upstream go-billy/osfs library. PR #31 adds changes made in
pkg/git/gogit/fstothe go-billy/osfs repository, using a corrected implementation
of the SecureJoinVFS function in the pjbgf/filepath-securejoin repository (later
changed in PR #34 to the cyphar/filepath-securejoin repository). Notably, these
implementations of SecureJoinVFS do not contain the erroneous return statement
described in TOB-FLUX-10.

Trail of Bits 47 Flux Security Assessment
PUBLIC

https://github.com/fluxcd/pkg/pull/663
https://github.com/fluxcd/flux2/pull/4177
https://github.com/anchore/quill
https://github.com/fluxcd/pkg/pull/650
https://github.com/go-git/go-billy/pull/31
https://github.com/pjbgf/filepath-securejoin
https://github.com/go-git/go-billy/pull/34
https://github.com/cyphar/filepath-securejoin

G. Fix Review Status Categories

The following table describes the statuses used to indicate whether an issue has been

sufficiently addressed.

Fix Status
Status
Undetermined

I Unresolved
Partially Resolved

Resolved

Trail of Bits
PUBLIC

Description

The status of the issue was not determined during this engagement.
The issue persists and has not been resolved.

The issue persists but has been partially resolved.

The issue has been sufficiently resolved.

48 Flux Security Assessment

