
 Flux
 Security Assessment

 November 8, 2023

 Prepared for:

 Hidde Beydals
 Open Source Technology Improvement Fund (OSTIF)

 Prepared by: Maciej Domański and Sam Alws

 About Trail of Bits

 Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
 assessment and advisory services to some of the world’s most targeted organizations. We
 combine high- end security research with a real -world attacker mentality to reduce risk and
 fortify code. With 100+ employees around the globe, we’ve helped secure critical software
 elements that support billions of end users, including Kubernetes and the Linux kernel.

 We maintain an exhaustive list of publications at https://github.com/trailofbits/publications ,
 with links to papers, presentations, public audit reports, and podcast appearances.

 In recent years, Trail of Bits consultants have showcased cutting-edge research through
 presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
 the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

 We specialize in software testing and code review projects, supporting client organizations
 in the technology, defense, and finance industries, as well as government entities. Notable
 clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

 Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
 projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
 MakerDAO, Matic, Uniswap, Web3, and Zcash.

 To keep up to date with our latest news and announcements, please follow @trailofbits on
 Twitter and explore our public repositories at https://github.com/trailofbits . To engage us
 directly, visit our “Contact” page at https://www.trailofbits.com/contact , or email us at
 info@trailofbits.com .

 Trail of Bits, Inc.
 228 Park Ave S #80688
 New York, NY 10003
 https://www.trailofbits.com
 info@trailofbits.com

 Trail of Bits 1 Flux Security Assessment
 PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

 Notices and Remarks

 Copyright and Distribution
 © 2023 by Trail of Bits, Inc.

 All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
 report in the United Kingdom.

 This report is considered by Trail of Bits to be public information; it is licensed to OSTIF
 under the terms of the project statement of work and has been made public at OSTIF’s
 request. Material within this report may not be reproduced or distributed in part or in
 whole without the express written permission of Trail of Bits.

 The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page .
 Reports accessed through any source other than that page may have been modified and
 should not be considered authentic.

 Test Coverage Disclaimer
 All activities undertaken by Trail of Bits in association with this project were performed in
 accordance with a statement of work and agreed upon project plan.

 Security assessment projects are time-boxed and often reliant on information that may be
 provided by a client, its affiliates, or its partners. As a result, the findings documented in
 this report should not be considered a comprehensive list of security issues, flaws, or
 defects in the target system or codebase.

 Trail of Bits uses automated testing techniques to rapidly test the controls and security
 properties of software. These techniques augment our manual security review work, but
 each has its limitations: for example, a tool may not generate a random edge case that
 violates a property or may not fully complete its analysis during the allotted time. Their use
 is also limited by the time and resource constraints of a project.

 Trail of Bits 2 Flux Security Assessment
 PUBLIC

https://github.com/trailofbits/publications

 Table of Contents

 About Trail of Bits 1
 Notices and Remarks 2
 Table of Contents 3
 Executive Summary 4
 Project Summary 6
 Project Goals 7
 Project Targets 9
 Project Coverage 10
 Automated Testing 11
 Codebase Maturity Evaluation 12
 Summary of Findings 14
 Detailed Findings 15

 1. SetExpiration does not set the expiration for the given key 15
 2. Inappropriate string trimming function 17
 3. Go’s default HTTP client uses a shared value that can be modified by other
 components 18
 4. Unhandled error value 20
 5. Potential implicit memory aliasing in for loops 22
 6. Directories created via os.MkdirAll are not checked for permissions 24
 7. Directories and files created with overly lenient permissions 25
 8. No restriction on minimum SSH RSA public key bit size 26
 9. Flux macOS release binary susceptible to .dylib injection 28
 10. Path traversal in SecureJoin implementation 30

 A. Vulnerability Categories 33
 B. Code Maturity Categories 35
 C. Non-Security-Related Findings 37
 D. Issue Occurrences 39
 E. Automated Static Analysis 42
 F. Fix Review Results 44

 Detailed Fix Review Results 46
 G. Fix Review Status Categories 48

 Trail of Bits 3 Flux Security Assessment
 PUBLIC

 Executive Summary

 Engagement Overview
 OSTIF engaged Trail of Bits to review the security of Flux, a tool for keeping Kubernetes
 clusters in sync with configuration sources.

 A team of two consultants conducted the review from July 24 to August 4, 2023, for a total
 of four engineer-weeks of effort. Our testing efforts focused on the elements that are part
 of the General Availability release. With full access to source code and documentation, we
 performed static and dynamic testing of the Flux tool, using automated and manual
 processes.

 Observations and Impact
 Trail of Bits found that Flux is well structured and generally written defensively. However,
 we identified one undetermined-severity finding, TOB-FLUX-10 , that poses an immediate
 risk to users if the underlying package is treated as a standalone library because its main
 security guarantee of preventing unauthorized read/write operations outside the root
 directory has been proven false.

 We did not identify any other findings that present an immediate threat to Flux or its users.
 However, we did identify findings that could have been uncovered with more robust unit
 testing (TOB-FLUX-1 and TOB-FLUX-2). By expanding unit test coverage, Flux can further
 enhance its resilience.

 Recommendations
 Based on the codebase maturity evaluation and findings identified during the security
 review, Trail of Bits recommends that OSTIF take the following steps:

 ● Remediate the findings disclosed in this report. These findings should be
 addressed as part of a direct remediation or as part of any refactor that may occur
 when addressing other recommendations.

 ● Implement static analysis tools in the CI/CD pipeline. Implementing additional
 tools presented in appendix E will help automatically find issues in the code that
 could lead to security vulnerabilities before they are merged into the codebase.

 Trail of Bits 4 Flux Security Assessment
 PUBLIC

 Finding Severities and Categories

 The following tables provide the number of findings by severity and category.

 EXPOSURE ANALYSIS

 Severity Count

 High 0

 Medium 0

 Low 3

 Informational 6

 Undetermined 1

 CATEGORY BREAKDOWN

 Category Count

 Access Controls 1

 Configuration 2

 Data Validation 3

 Error Reporting 1

 Undefined Behavior 3

 Trail of Bits 5 Flux Security Assessment
 PUBLIC

 Project Summary

 Contact Information
 The following managers were associated with this project:

 Dan Guido , Account Manager Jeff Braswell , Project Manager
 dan@trailofbits.com jeff.braswell@trailofbits.com

 The following engineers were associated with this project:

 Maciej Domański , Consultant Sam Alws , Consultant
 maciej.domanski@trailofbits.com sam.alws@trailofbits.com

 Project Timeline
 The significant events and milestones of the project are listed below.

 Date Event

 July 20, 2023 Pre-project kickoff call

 July 31, 2023 Status update meeting #1

 August 4, 2023 Delivery of report draft

 August 4, 2023 Report readout meeting

 October 20, 2023 Delivery of report draft with fix review

 November 8, 2023 Delivery of comprehensive report with fix review

 Trail of Bits 6 Flux Security Assessment
 PUBLIC

mailto:dan@trailofbits.com

 Project Goals

 The engagement was scoped to provide a security assessment of the Flux tool. Specifically,
 we sought to answer the following non-exhaustive list of questions:

 ● Does the codebase conform to industry best practices?

 ● Are the system architecture and design foundationally secure?

 ● Are there any data exposures to or data extractions by unknown or unauthorized
 sources?

 ● Can Flux be used to deliver malicious payloads and executables?

 ● Does Flux correctly use the Kubernetes API extension system and other core
 components of the Kubernetes ecosystem?

 ● Does Flux securely handle credential storage and use?

 ● Are there appropriate access controls on critical functions?

 ● Are there areas within ownership and access controls that may be compromised or
 altered to cause adverse states, unauthorized access, or exploitation?

 ● Can security constraints when syncing repositories and files be bypassed?

 ● Can files outside the designated file structure be replaced and/or modified?

 ● Could the system experience a denial of service (DoS)?

 ● Are all inputs and system parameters validated correctly?

 ● Do adequate account management, security controls, and separation exist to
 operate the accounts safely?

 ● How are automated testing and validation of security controls in pipelines
 performed?

 ● Are strong sign-in mechanisms used? How long do credentials last?

 ● What security mechanisms are used to store secrets?

 ● How are account groups, permissions, and attributes provisioned securely?

 ● How are public and cross-account access mechanisms managed?

 Trail of Bits 7 Flux Security Assessment
 PUBLIC

 ● How are shared resources managed and secured?

 ● How are service and application logging configured and monitored?

 ● How are data and customer information protected at rest and in transit?

 ● If supporting a multi-tenant environment, how is isolation implemented between
 the tenants? What resources are shared between tenants?

 ● Are access controls for cross-namespace objects implemented securely?

 Trail of Bits 8 Flux Security Assessment
 PUBLIC

 Project Targets

 The engagement involved a review and testing of the targets listed below.

 kustomize-controller
 Repository https://github.com/fluxcd/kustomize-controller

 Version 8d9a1811655fff9a093f9c98397e2ed806876f10

 Type Golang

 Platform Linux

 source-controller
 Repository https://github.com/fluxcd/source-controller

 Version 7f40be76e90b2d4afe9f8f9d7f53ac719fe1205e

 Type Golang

 Platform Linux

 notification-controller
 Repository https://github.com/fluxcd/notification-controller

 Version b80c2c4060f62af40c06fe2f6f3bef295ee56e43

 Type Golang

 Platform Linux

 flux2
 Repository https://github.com/fluxcd/flux2

 Version 44d69d6fc0c353e79c1bad021a4aca135033bce8

 Type Golang

 Platform Linux

 pkg
 Repository https://github.com/fluxcd/pkg

 Version 2a323d771e17af02dee2ccbbb9b445b78ab048e5

 Type Golang

 Platform Linux

 Trail of Bits 9 Flux Security Assessment
 PUBLIC

 Project Coverage

 This section provides an overview of the analysis coverage of the review, as determined by
 our high-level engagement goals. Our approaches included the following:

 ● Manually reviewing the provided repositories with a focus on the controllers with
 the General Availability components:

 ○ source-controller

 ○ kustomize-controller

 ○ notification-controller

 ○ flux2

 ○ The pkg repository—in particular, the git/gogit/fs component

 ● Running static analysis tools and triaging results

 Coverage Limitations
 Because of the time-boxed nature of testing work, it is common to encounter coverage
 limitations. The following list outlines the coverage limitations of the engagement and
 indicates system elements that may warrant further review:

 ● We did not review the helm-controller , image-automation-controller , and
 image-reflector-controller components since they are not General
 Availability components.

 ● We did not thoroughly review the “Flux Multi-tenancy Threat Modelling” document.
 However, it was the basis for our assumptions and potential attack scenarios.

 ● We did not review unit, end-to-end, or integration tests for completeness, nor did
 we evaluate the fuzz testing coverage.

 ● We did not review whether logging information was sufficient.

 ● The list of outdated dependencies and deprecated methods was not included in our
 assessment. Instead, we focused on analyzing the code of third-party libraries while
 reviewing specific components.

 Trail of Bits 10 Flux Security Assessment
 PUBLIC

 Automated Testing

 Trail of Bits uses automated techniques to extensively test the security properties of
 software. We use both open-source static analysis and fuzzing utilities, along with tools
 developed in house, to perform automated testing of source code and compiled software.

 Test Harness Configuration
 We used the following tools in the automated testing phase of this project:

 Tool Description Policy

 Semgrep A static analysis tool designed to identify bugs and
 specific code patterns across multiple languages

 Appendix E

 CodeQL A code analysis engine developed by GitHub to
 automate security checks

 Appendix E

 TruffleHog An open-source tool that scans Git repositories for
 secrets such as private keys and API tokens

 Appendix E

 golangci-lint A Go linters aggregator Appendix E

 Areas of Focus
 Our automated testing and verification work focused on the following system properties:

 ● The system does not produce undefined behavior.

 ● The code does not contain security or quality issues.

 Trail of Bits 11 Flux Security Assessment
 PUBLIC

https://github.com/returntocorp/semgrep
https://codeql.github.com/
https://github.com/trufflesecurity/trufflehog
https://golangci-lint.run/

 Codebase Maturity Evaluation

 Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
 the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
 identified here often stem from root causes within the software development life cycle that
 should be addressed through standardization measures (e.g., the use of common libraries,
 functions, or frameworks) or training and awareness programs.

 Category Summary Result

 Arithmetic The application’s primary purpose does not involve
 mathematical operations; however, as with any software,
 arithmetic operations are present. We found no
 significant issues concerning the proper use of
 mathematical operations.

 Satisfactory

 Auditing The density and quality of logged information is
 sufficient. However, we did not try to verify this for all
 execution paths or verify whether all information
 required to perform incident response is always logged.

 Further
 Investigation
 Required

 Authentication /
 Access Controls

 The Kubernetes role-based access controls (RBACs)
 follow best practices. RBAC impersonation is used to limit
 the permissions of tenants.

 Satisfactory

 Complexity
 Management

 Overall, the Flux codebase has a logical organization and
 clear structures to manage the system’s complexity. It is
 possible for a new developer to quickly understand the
 structure of the Flux codebase.

 However, we found duplicate code that uses two distinct
 SecureJoin implementations from different packages
 with nearly identical implementations (appendix C, item
 4).

 Satisfactory

 Configuration We found that specific components are generally
 configured securely. However, some directories have
 overly lenient permissions (TOB-FLUX-7). Additionally,
 consider hardening the macOS release binary against
 potential .dylib hijacking (TOB-FLUX-9).

 Satisfactory

 Trail of Bits 12 Flux Security Assessment
 PUBLIC

 Cryptography
 and Key
 Management

 We found no major issues related to cryptography. Satisfactory

 Data Handling Generally, Flux takes the necessary precautions when
 validating most data types; however, we found that an
 inappropriate string trimming function is used
 (TOB-FLUX-2) and a minimum RSA public key bit size is
 not validated (TOB-FLUX-8).

 Satisfactory

 Documentation User-facing documentation is thorough, with getting-
 started guides, setup examples, and API references. In
 addition, the code contains fairly thorough comments.
 Nevertheless, we recommend completing documentation
 with warnings to users about potentially dangerous
 options and their implications (e.g., passing a password
 as a CLI argument).

 Satisfactory

 Maintenance While our assessment did not prioritize checking for
 outdated third-party dependencies, our brief analysis of
 certain components revealed outdated security-related
 libraries. Implementing govulncheck could improve
 maintenance efforts for Golang code.

 Further
 Investigation
 Required

 Memory Safety
 and Error
 Handling

 Flux is written in Go, which reduces its exposure to
 memory safety issues. However, we found a minor issue
 related to an unhandled error value (TOB-FLUX-4).

 Satisfactory

 Testing and
 Verification

 The codebase is verified using various tests, including
 fuzz tests. Due to the time constraints of the audit, we
 did not evaluate the thoroughness of the tests. However,
 we found that some functions do not work properly
 (TOB-FLUX-1), which could be caught with the unit test
 that covers the identified function. We also recommend
 customizing a CodeQL GitHub workflow with a more
 detailed s ecurity-and-quality query suite
 (TOB-FLUX-4).

 Further
 Investigation
 Required

 Trail of Bits 13 Flux Security Assessment
 PUBLIC

 Summary of Findings

 The table below summarizes the findings of the review, including type and severity details.

 ID Title Type Severity

 1 SetExpiration does not set the expiration for the
 given key

 Undefined
 Behavior

 Low

 2 Inappropriate string trimming function Data Validation Informational

 3 Go’s default HTTP client uses a shared value that
 can be modified by other components

 Undefined
 Behavior

 Low

 4 Unhandled error value Error Reporting Informational

 5 Potential implicit memory aliasing in for loops Undefined
 Behavior

 Informational

 6 Directories created via os.MkdirAll are not
 checked for permissions

 Access Controls Informational

 7 Directories and files created with overly lenient
 permissions

 Configuration Informational

 8 No restriction on minimum SSH RSA public key bit
 size

 Data Validation Informational

 9 Flux macOS release binary susceptible to .dylib
 injection

 Configuration Low

 10 Path traversal in SecureJoin implementation Data Validation Undetermined

 Trail of Bits 14 Flux Security Assessment
 PUBLIC

 Detailed Findings

 1. SetExpiration does not set the expiration for the given key

 Severity: Low Difficulty: High

 Type: Undefined Behavior Finding ID: TOB-FLUX-1

 Target: source-controller/internal/cache/cache.go#163–172

 Description
 The SetExpiration function does not change the expiration for the given key because it
 does not store the updated item back in the specific cache item (figure 1.1).

 The SetExpiration function retrieves the corresponding item from the cache and assigns
 it to the item variable (figure 1.1, line 165). Then it updates the item’s expiration time by
 setting its Expiration field to the current time plus the provided expiration duration
 (figure 1.1, line 170). Finally, the lock on the cache is released without the prior cache
 update (figure 1.1, line 171), so any subsequent access to the cache item with the given key
 will not see the updated expiration set by SetExpiration .

 163 func (c *cache) SetExpiration(key string , expiration time.Duration) {
 164 c.mu.Lock()
 165 item, ok := c.Items[key]
 166 if !ok {
 167 c.mu.Unlock()
 168 return
 169 }
 170 item.Expiration = time.Now().Add(expiration).UnixNano()
 171 c.mu.Unlock()
 172 }

 Figure 1.1: The SetExpiration function responsible for setting the expiration for the given key
 (source-controller/internal/cache/cache.go#163–172)

 Exploit Scenario
 A developer intentionally places sensitive data with a specific expiration date in the cache.
 An attacker gains access to confidential information because the sensitive data has not
 expired. This allows the attacker to further compromise the system.

 Recommendations
 Short term, explicitly assign the updated item variable back to the c.Items map before
 releasing the lock (figure 1.2).

 Trail of Bits 15 Flux Security Assessment
 PUBLIC

https://github.com/fluxcd/source-controller/blob/7f40be76e90b2d4afe9f8f9d7f53ac719fe1205e/internal/cache/cache.go#L163-L172

 func (c *cache) SetExpiration(key string , expiration time.Duration) {
 c.mu.Lock()

 if item, ok := c.Items[key]; ok {
 item.Expiration = time.Now().Add(expiration).UnixNano()
 c.Items[key] = item

 }

 c.mu.Unlock()
 }

 Figure 1.2: The proposed fix that updates the expiration time correctly

 Long term, extend unit tests in the cache_test.go file to cover the SetExpiration
 function.

 Trail of Bits 16 Flux Security Assessment
 PUBLIC

https://github.com/fluxcd/source-controller/blob/7f40be76e90b2d4afe9f8f9d7f53ac719fe1205e/internal/cache/cache_test.go

 2. Inappropriate string trimming function

 Severity: Informational Difficulty: High

 Type: Data Validation Finding ID: TOB-FLUX-2

 Target:
 notification-controller/internal/server/receiver_handlers.go#71-77

 Description
 The handlePayload function fails to remove a specific substring as intended because its
 implementation uses the strings.TrimLeft function (figure 2.1). The incoming HTTP
 request URL (r.RequestURI) is passed to the strings.TrimLeft function with the
 apiv1.ReceiverWebhookPath parameter, which is set to /hook (figure 2.1, line 74). The
 goal is to remove this specific substring from r.RequestURI . However, due to the use of
 strings.TrimLeft , all occurrences of the specified characters, instead of just the exact
 substring, are removed from the left side of the string. Consequently, the handling request
 path is incorrectly logged (figure 2.1, line 76).

 71 func (s *ReceiverServer) handlePayload() func (w http.ResponseWriter, r
 *http.Request) {
 72 return func (w http.ResponseWriter, r *http.Request) {
 73 ctx := context.Background()
 74 digest := url.PathEscape(strings.TrimLeft (r.RequestURI,
 apiv1.ReceiverWebhookPath)) // apiv1.ReceiverWebhookPath = “/hook”
 75
 76 s.logger.Info(fmt.Sprintf("handling request: %s" , digest))

 Figure 2.1: The use of strings.TrimLeft in the handlePayload function
 (notification-controller/internal/server/receiver_handlers.go#71–77)

 Recommendations
 Short term, fix the handlePayload function to properly remove substrings from the
 remote URL using strings.TrimPrefix function.

 Long term, implement unit tests for all string-parsing functions. In the CI/CD pipeline,
 introduce the golangci-lint tool that uses the Staticcheck tool with the SA1024 check.

 Trail of Bits 17 Flux Security Assessment
 PUBLIC

https://pkg.go.dev/strings#TrimLeft
https://github.com/fluxcd/notification-controller/blob/b80c2c4060f62af40c06fe2f6f3bef295ee56e43/internal/server/receiver_handlers.go#L71-L77
https://pkg.go.dev/strings#TrimPrefix
https://golangci-lint.run/
https://staticcheck.dev/
https://staticcheck.dev/docs/checks#SA1024

 3. Go’s default HTTP client uses a shared value that can be modified by other
 components

 Severity: Low Difficulty: High

 Type: Undefined Behavior Finding ID: TOB-FLUX-3

 Target: flux2/pkg/manifestgen/install/install.go#91–97 ,
 flux2/pkg/manifestgen/install/install.go#118–125

 Description
 Go's default HTTP client uses a shared http.DefaultClient value that can be modified
 by other application components, which leads to unexpected behavior. In the case of Flux,
 the issue arises in the GetLatestVersion and ExistingVersion functions, where the
 timeout is modified.

 91 // GetLatestVersion calls the GitHub API and returns the latest released version
 92 func GetLatestVersion() (string , error) {
 93 ghURL := "https://api.github.com/repos/fluxcd/flux2/releases/latest"
 94 c := http.DefaultClient
 95 c.Timeout = 15 * time.Second
 96
 97 res, err := c.Get(ghURL)

 Figure 3.1: The GetLatestVersion function that uses http.DefaultClient
 (flux2/pkg/manifestgen/install/install.go#91–97)

 118 func ExistingVersion(version string) (bool , error) {
 // (...)
 123 ghURL :=
 fmt.Sprintf("https://api.github.com/repos/fluxcd/flux2/releases/tags/%s" , version)
 124 c := http.DefaultClient
 125 c.Timeout = 15 * time.Second

 Figure 3.2: The ExistingVersion function that uses http.DefaultClient
 (flux2/pkg/manifestgen/install/install.go#118–125)

 Exploit Scenario
 An attacker introduces a malicious library into the Flux codebase that can modify the
 shared http.DefaultClient value. By manipulating this value, the attacker orchestrates
 DoS attacks, disrupting the software’s normal operation.

 Trail of Bits 18 Flux Security Assessment
 PUBLIC

https://github.com/fluxcd/flux2/blob/44d69d6fc0c353e79c1bad021a4aca135033bce8/pkg/manifestgen/install/install.go#L91-L97C26
https://github.com/fluxcd/flux2/blob/44d69d6fc0c353e79c1bad021a4aca135033bce8/pkg/manifestgen/install/install.go#L118-L125C30

 Recommendations
 Short term, avoid using the shared http.DefaultClient value and instead use the
 go-cleanhttp package to ensure that the HTTP client configuration remains unaffected
 by other parts of the application.

 Long term, periodically audit other global values that may impact different components
 within Flux.

 References
 ● hashicorp/go-cleanhttp —wrapping functions for accessing "clean" Go

 http.Client values

 ● PoC showing shared global variable used by the default HTTP client

 Trail of Bits 19 Flux Security Assessment
 PUBLIC

https://pkg.go.dev/github.com/hashicorp/go-cleanhttp
https://github.com/hashicorp/go-cleanhttp
https://github.com/hashicorp/go-cleanhttp
https://go.dev/play/p/I9GMcskDyiA

 4. Unhandled error value

 Severity: Informational Difficulty: High

 Type: Error Reporting Finding ID: TOB-FLUX-4

 Target: flux2/cmd/flux/events.go#129-138

 Description
 The eventsCmdRun function in the flux2 repository ignores an error value returned by a
 call to the getRows function. This can result in incorrect error reporting to the user.

 129 rows, err := getRows(ctx, kubeclient, clientListOpts, refListOpts,
 showNamespace)
 130 if len (rows) == 0 {
 131 if eventArgs.allNamespaces {
 132 logger.Failuref("No events found.")
 133 } else {
 134 logger.Failuref("No events found in %s namespace." ,
 *kubeconfigArgs.Namespace)
 135 }
 136
 137 return nil
 138 }

 Figure 4.1: Ignored err value (flux2/cmd/flux/events.go#129-138)

 The getRows function returns a nil value in the rows variable whenever it returns an
 error, which means the if statement’s condition on line 130 will be satisfied. The if
 statement body will incorrectly report to the user that no events were found, rather than
 printing the err value.

 Recommendations
 Short term, add an err != nil check and modify the eventsCmdRun function to handle
 error values accordingly (print an error message and then return err), as shown in the
 following figure:

 rows, err := getRows(ctx, kubeclient, clientListOpts, refListOpts, showNamespace)
 if err != nil {

 logger.Failuref("Error while getting rows: %s" , err)
 return err

 }
 if len (rows) == 0 {

 if eventArgs.allNamespaces {
 logger.Failuref("No events found.")

 Trail of Bits 20 Flux Security Assessment
 PUBLIC

https://github.com/fluxcd/flux2/blob/44d69d6fc0c353e79c1bad021a4aca135033bce8/cmd/flux/events.go#L129-L138

 } else {
 logger.Failuref("No events found in %s namespace." ,

 *kubeconfigArgs.Namespace)
 }
 return nil

 }

 Figure 4.2: Fixed code snippet

 Long term, ensure that there are no other places in the Flux codebase where error values
 are ignored. Adding CodeQL to the project CI/CD with the queries:
 security-and-quality option will allow the go/useless-assignment-to-local
 query to catch similar issues.

 Trail of Bits 21 Flux Security Assessment
 PUBLIC

https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/customizing-code-scanning#:~:text=%23%20security%2Dextended%20or%20security%2Dand%2Dquality.%0A%20%20%20%20queries%3A%20security%2Dextended
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/customizing-code-scanning#:~:text=%23%20security%2Dextended%20or%20security%2Dand%2Dquality.%0A%20%20%20%20queries%3A%20security%2Dextended

 5. Potential implicit memory aliasing in for loops

 Severity: Informational Difficulty: High

 Type: Undefined Behavior Finding ID: TOB-FLUX-5

 Target: Various locations

 Description
 Throughout the Flux codebase, loop range values are passed by reference to functions.
 This reference is unstable and is updated at each iteration of the for loop. Here are two
 examples:

 for _, resource := range resources.Items {
 if err := s.annotate(ctx, &resource); err != nil {

 Figure 5.1: Example of memory aliasing in a for loop
 (notification-controller/internal/server/receiver_handlers.go#411-412)

 for _, i := range list.Items {
 if !bucket.GetArtifact().HasRevision(i.Status.ObservedSourceArtifactRevision)

 {
 reqs = append (reqs, reconcile.Request{NamespacedName:

 client.ObjectKeyFromObject(&i)})

 Figure 5.2: Example of memory aliasing in a for loop
 (source-controller/internal/controller/helmchart_controller.go#1312-1314)

 We did not find any examples where this results in a security problem. However, it is
 generally a very unsafe practice; if any of these function calls preserved their input values
 (e.g., by storing them in structs), the stored value would be changed while the for loop was
 iterating.

 A full list of occurrences of this issue can be found in appendix D .

 Recommendations
 Short term, replace these references with more permanent ones. Here are two possible
 ways to do this:

 for i, v := range l {
 // option 1: reference the entry in the list
 // the reference still only lasts as long as the list does

 Trail of Bits 22 Flux Security Assessment
 PUBLIC

https://github.com/fluxcd/notification-controller/blob/b80c2c4060f62af40c06fe2f6f3bef295ee56e43/internal/server/receiver_handlers.go#L411-L412
https://github.com/fluxcd/source-controller/blob/9ff98d9c3d3a673f07705f877c297ad40c2241d5/internal/controller/helmchart_controller.go#L1312-L1314

 foo(&l[i])

 // option 2: copy the value before calling the function
 vClone := v
 foo(&vClone)

 }

 Figure 5.3: Safer ways to pass a reference to a function

 Long term, implement the gosec tool in the project CI/CD to catch potential issues with
 Golang.

 References
 ● Beware of Implicit Memory Aliasing in Go For Loop

 Trail of Bits 23 Flux Security Assessment
 PUBLIC

https://github.com/securego/gosec
https://husni.dev/beware-of-implicit-memory-aliasing-in-go-foor-loop/

 6. Directories created via os.MkdirAll are not checked for permissions

 Severity: Informational Difficulty: High

 Type: Access Controls Finding ID: TOB-FLUX-6

 Target: Various locations

 Description
 Flux creates certain directory paths with specific access permissions by using the
 os.MkdirAll function. This function does not perform any permission checks when a
 given directory path already exists. This would allow a local attacker to create a directory
 with broad permissions before Flux could create the directory with narrower permissions,
 possibly allowing the attacker to later tamper with the files.

 A full list of occurrences of this issue can be found in appendix D .

 Exploit Scenario
 Eve has unprivileged access to a container running a Flux controller. Eve introduces new
 directories or paths with 0777 permissions before the Flux code does so. Eve then deletes
 and forges files in that directory to change the result of further code executed by the Flux
 controller.

 Recommendations
 Short term, when using functions such as os.MkdirAll , os.WriteFile , or
 outil.WriteFile , check all directories in the path and validate their owner and
 permissions before performing operations on them. This will help avoid situations where
 sensitive information is written to a preexisting attacker-controlled path.

 Long term, enumerate files and directories for their expected permissions, and build
 validation to ensure appropriate permissions are applied before creation and upon use.
 Ideally, this validation should be centrally defined and used throughout the application as a
 whole.

 Trail of Bits 24 Flux Security Assessment
 PUBLIC

 7. Directories and files created with overly lenient permissions

 Severity: Informational Difficulty: High

 Type: Configuration Finding ID: TOB-FLUX-7

 Target: Various locations

 Description
 Flux creates various directories and files with overly lenient permissions. This would allow
 an attacker with unprivileged access to edit, delete, and read files, interfering with Flux
 controllers’ operations.

 if err := os.MkdirAll(abs, 0 o755); err != nil {

 Figure 7.1: Example of a directory created with overly lenient permissions
 (pkg/tar/tar.go#167)

 err = os.WriteFile(path, out, 0 o644)

 Figure 7.2: Example of a file created with overly lenient permissions
 (kustomize-controller/internal/decryptor/decryptor.go#505)

 A full list of occurrences of this issue can be found in appendix D .

 Recommendations
 Short term, generally use permissions of 0750 or less for directories and 0600 or less for
 files.

 Long term, enumerate files and directories for their expected permissions overall, and
 build validation to ensure appropriate permissions are applied before creation and upon
 use. Ideally, this validation should be centrally defined and used throughout the application
 as a whole.

 Trail of Bits 25 Flux Security Assessment
 PUBLIC

https://github.com/fluxcd/pkg/blob/2a323d771e17af02dee2ccbbb9b445b78ab048e5/tar/tar.go#L167
https://github.com/fluxcd/kustomize-controller/blob/8d9a1811655fff9a093f9c98397e2ed806876f10/internal/decryptor/decryptor.go#L505

 8. No restriction on minimum SSH RSA public key bit size

 Severity: Informational Difficulty: High

 Type: Data Validation Finding ID: TOB-FLUX-8

 Target: flux2/internal/flags/rsa_key_bits.go

 Description
 Flux does not restrict a user from creating a Kubernetes secret for Git authentication using
 a dangerous SSH RSA public key bit size (figure 8.1). A user can create a configuration with a
 16-bit key size (figure 8.2), which is insecure because an attacker can easily brute force the
 correct private key that matches the public key.

 var defaultRSAKeyBits = 2048
 type RSAKeyBits int
 // (...)
 func (b *RSAKeyBits) Set(str string) error {

 if strings.TrimSpace(str) == "" {
 *b = RSAKeyBits(defaultRSAKeyBits)
 return nil

 }
 bits, err := strconv.Atoi(str)
 if err != nil {

 return err
 }
 if bits == 0 || bits% 8 != 0 {

 return fmt.Errorf("RSA key bit size must be a multiples of 8")
 }
 *b = RSAKeyBits(bits)
 return nil

 }

 Figure 8.1: The Set function responsible for the --ssh-rsa-bits parameter validation
 (flux2/internal/flags/rsa_key_bits.go#25–47)

 $ flux create secret git podinfo-auth \
 --url=ssh://git@github.com/stefanprodan/podinfo \
 --export --ssh-rsa-bits 16 --ssh-key-algorithm=rsa

 apiVersion: v1
 kind: Secret
 metadata:
 name: podinfo-auth
 namespace: flux-system

 stringData:

 Trail of Bits 26 Flux Security Assessment
 PUBLIC

https://github.com/fluxcd/flux2/blob/44d69d6fc0c353e79c1bad021a4aca135033bce8/internal/flags/rsa_key_bits.go#L25-L47

 identity: |
 -----BEGIN PRIVATE KEY-----
 MDoCAQAwDQYJKoZIhvcNAQEBBQAEJjAkAgEAAgMAsDkCAwEAAQICMZECAgDlAgIA
 xQICAJUCAgCRAgFd
 -----END PRIVATE KEY-----

 identity.pub: |
 ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAAAAwCwOQ ==

 Figure 8.2: The flux command to create a Kubernetes secret for Git
 authentication using a 16-bit RSA public key

 Recommendations
 Short term, implement a strict minimum requirement of 1024 bits for the SSH RSA public
 key size. This will ensure that users cannot create Kubernetes secrets with dangerously
 small key sizes, such as the 16-bit example shown in figure 8.2. By enforcing a larger key
 size, the system's security will significantly improve because it will be much more resistant
 to brute-force attacks.

 Long term, periodically review other Flux arguments to ensure they do not allow insecure
 configurations.

 Trail of Bits 27 Flux Security Assessment
 PUBLIC

 9. Flux macOS release binary susceptible to .dylib injection

 Severity: Low Difficulty: High

 Type: Configuration Finding ID: TOB-FLUX-9

 Target: flux process

 Description
 The Flux macOS release binary does not have Hardened Runtime restrictions enabled
 (figure 9.1), making the binary vulnerable to a .dylib file injection attack. A .dylib injection
 attack allows an attacker to inject a custom dynamic library (.dylib) into a process,
 potentially leading to, for example, unauthorized access to sensitive information.

 $ brew install fluxcd/tap/flux
 $ codesign -dvvv ̀ which flux ̀
 /usr/local/bin/flux: code object is not signed at all

 Figure 9.1: Installing the official release of Flux by Homebrew and using the codesign tool to
 check whether the binary has the kSecCodeSignatureEnforcement flag enabled

 $ cat inj.c
 #include <stdio.h>
 // The constructor attribute causes the function to be called automatically before
 before main() is called
 __attribute__((constructor))
 static void customConstructor(int argc, const char **argv)
 {
 printf("Successfully injected dylib\n");

 }
 # Exporting the DYLD_INSERT_LIBRARIES environment variable to inject dynamic
 libraries into other running processes
 $ export DYLD_INSERT_LIBRARIES=`pwd`/inj.dylib
 $ flux
 Successfully injected dylib
 Command line utility for assembling Kubernetes CD pipelines the GitOps way.
 (...)

 Figure 9.2: The proof of concept showing that the custom .dylib file can
 be successfully injected into the flux process

 Exploit Scenario
 An attacker gains access to a target user’s machine and crafts a malicious .dylib to steal
 passwords from the standard Flux input. Then the attacker sets the
 DYLD_INSERT_LIBRARIES environment variable in the .zshrc file to the path of the crafted

 Trail of Bits 28 Flux Security Assessment
 PUBLIC

https://developer.apple.com/documentation/security/hardened_runtime
https://developer.apple.com/documentation/security/seccodesignatureflags/kseccodesignatureenforcement

 .dylib. The user executes the flux bootstrap github command with the --token-auth
 parameter and provides a GitHub personal access token through standard input. As a
 result, the hijacked access token is sent to the attacker.

 Recommendations
 Short term, sign the release macOS Flux binaries and verify that the code signature flags
 include the kSecCodeSignatureEnforcement flag to ensure the Hardened Runtime
 protects the binary. The code signature flags are displayed in the CodeDirectory line
 when running the codesign command (figure 9.3):

 ● A 0x0 flag indicates that the binary has a standard code signature without additional
 features.

 ● A 0x10000 flag (kSecCodeSignatureEnforcement) indicates that the application
 has implemented runtime hardening policies.

 $ codesign -dvvv ̀ which kubectl ̀
 Executable =/Applications/Docker.app/Contents/Resources/bin/kubectl
 Identifier =kubectl
 Format =Mach-O thin (x86_64)
 CodeDirectory v = 20500 size = 431283 flags =0x10000(runtime) hashes = 13472 +2
 location =embedded

 Figure 9.3: An example that uses the codesign tool to show a hardened kubectl binary

 Long term, implement automatic checks in the project CI/CD pipeline to ensure the release
 binary has Hardened Runtime restrictions enabled.

 References
 ● DYLIB Injection in Golang apps on Apple silicon chips

 ● A Deep Dive into Penetration Testing of macOS Applications (Part 2)

 Trail of Bits 29 Flux Security Assessment
 PUBLIC

https://www.form3.tech/engineering/content/dylib-injection-in-golang-apps
https://www.cyberark.com/resources/threat-research-blog/a-deep-dive-into-penetration-testing-of-macos-applications-part-2

 10. Path traversal in SecureJoin implementation

 Severity: Undetermined Difficulty: Undetermined

 Type: Data Validation Finding ID: TOB-FLUX-10

 Target: pkg/git/gogit/fs/join.go

 Description
 The SecureJoinVFS function in pkg/git/gogit/fs is meant to join two paths, root and
 unsafePath , with the condition that the returned path must be scoped within root .
 However, it is possible for an attacker to cause the function to return a path outside the
 root directory by crafting a symlink in the root directory. This compromises the methods
 on the OS struct in the pkg/git/gogit/fs library.

 Here is a portion of the code for SecureJoinVFS :

 99 // Absolute symlinks reset any work we've already done.
 100 if filepath.IsAbs(dest) {
 101 if !fi.IsDir() && strings.HasPrefix(dest,
 root+ string (filepath.Separator)) {
 102 return filepath.Clean(dest), nil
 103 }
 104 path.Reset()
 105 }

 Figure 10.1: Code snippet from SecureJoinVFS (pkg/git/gogit/fs/join.go#L99-L105)

 The if statements on lines 100 and 101 check that dest (the destination of a symlink) is an
 absolute path that has root/ as a prefix. In this case, dest is returned. However, it is
 possible for dest to both begin with root/ and not be a child of root . For instance,
 /tmp/rootDir/../a.txt begins with /tmp/rootDir/ but is not a descendent of
 /tmp/rootDir/ (it resolves to /tmp/a.txt).

 Here is a proof of concept showing how an attacker could write to a file outside the root
 directory:

 $ # STATE OF THE FILESYSTEM BEFORE MAIN.GO IS RUN; NOTE THE SYMLINK IN ROOTDIR

 $ pwd
 /tmp/poc

 $ ls -l rootDir
 total 0

 Trail of Bits 30 Flux Security Assessment
 PUBLIC

https://github.com/fluxcd/pkg/blob/2a323d771e17af02dee2ccbbb9b445b78ab048e5/git/gogit/fs/join.go#L99-L105

 lrwxr-xr-x 1 sam wheel 42 Aug 2 17:25 file.txt ->
 /tmp/poc/rootDir/../unrelatedDir/pwned.txt

 $ ls -l unrelatedDir
 total 0

 $ # MAIN.GO SHOULD LEAVE EVERYTHING OUTSIDE OF ROOTDIR UNTOUCHED, SINCE IT USES THE
 SECURE FILE SYSTEM

 $ cat main.go
 package main

 import ("fmt"
 "github.com/fluxcd/pkg/git/gogit/fs"
 "os")

 func main() {
 // Secure file system rooted in rootDir
 my_os := fs.New("/tmp/poc/rootDir")

 // Open file.txt and write “hello” to it; shouldn’t affect anything outside
 of rootDir

 f, err := my_os.OpenFile("file.txt" , os.O_APPEND|os.O_CREATE|os.O_WRONLY,
 0600)

 if err != nil {
 fmt.Println(err)
 return

 }
 _, err = f.Write([] byte ("hello\n"))
 if err != nil {

 fmt.Println(err)
 return

 }
 err = f.Close()
 if err != nil {

 fmt.Println(err)
 return

 }

 // To indicate that we haven’t hit any errors
 fmt.Println("success")

 }

 $ go run main.go
 success

 $ ls -l rootDir
 total 0
 lrwxr-xr-x 1 sam wheel 42 Aug 2 17:25 file.txt ->
 /tmp/poc/rootDir/../unrelatedDir/pwned.txt

 $ ls -l unrelatedDir
 total 8

 Trail of Bits 31 Flux Security Assessment
 PUBLIC

 -rw------- 1 sam wheel 6 Aug 2 17:27 pwned.txt

 $ cat unrelatedDir/pwned.txt
 hello

 $ # A file in unrelatedDir got written to because of the malicious symlink

 Figure 10.2: Proof of concept to demonstrate breaking out of SecureJoin root directory

 This issue will be high severity when the pkg/git/gogit/fs library is considered on its
 own because its main security guarantee is that it should not be possible to read or write
 outside the root directory. However, due to the time-boxed nature of this audit, we did not
 determine whether there is a way to exploit this vulnerability to affect Flux as a whole.

 Recommendations
 Short term, remove the return statement in figure 10.1, line 102; the loop should continue
 even when a symlink with an absolute path is hit, and the return statement at the end of
 the function (line 114) is not susceptible to this vulnerability.

 Long term, expand unit tests to catch similar issues.

 Trail of Bits 32 Flux Security Assessment
 PUBLIC

 A. Vulnerability Categories

 The following tables describe the vulnerability categories, severity levels, and difficulty
 levels used in this document.

 Vulnerability Categories

 Category Description

 Access Controls Insufficient authorization or assessment of rights

 Auditing and Logging Insufficient auditing of actions or logging of problems

 Authentication Improper identification of users

 Configuration Misconfigured servers, devices, or software components

 Cryptography A breach of system confidentiality or integrity

 Data Exposure Exposure of sensitive information

 Data Validation Improper reliance on the structure or values of data

 Denial of Service A system failure with an availability impact

 Error Reporting Insecure or insufficient reporting of error conditions

 Patching Use of an outdated software package or library

 Session Management Improper identification of authenticated users

 Testing Insufficient test methodology or test coverage

 Timing Race conditions or other order-of-operations flaws

 Undefined Behavior Undefined behavior triggered within the system

 Trail of Bits 33 Flux Security Assessment
 PUBLIC

 Severity Levels

 Severity Description

 Informational The issue does not pose an immediate risk but is relevant to security best
 practices.

 Undetermined The extent of the risk was not determined during this engagement.

 Low The risk is small or is not one the client has indicated is important.

 Medium User information is at risk; exploitation could pose reputational, legal, or
 moderate financial risks.

 High The flaw could affect numerous users and have serious reputational, legal,
 or financial implications.

 Difficulty Levels

 Difficulty Description

 Undetermined The difficulty of exploitation was not determined during this engagement.

 Low The flaw is well known; public tools for its exploitation exist or can be
 scripted.

 Medium An attacker must write an exploit or will need in-depth knowledge of the
 system.

 High An attacker must have privileged access to the system, may need to know
 complex technical details, or must discover other weaknesses to exploit this
 issue.

 Trail of Bits 34 Flux Security Assessment
 PUBLIC

 B. Code Maturity Categories

 The following tables describe the code maturity categories and rating criteria used in this
 document.

 Code Maturity Categories

 Category Description

 Arithmetic The proper use of mathematical operations and semantics

 Auditing The use of event auditing and logging to support monitoring

 Authentication /
 Access Controls

 The use of robust access controls to handle identification and
 authorization and to ensure safe interactions with the system

 Complexity
 Management

 The presence of clear structures designed to manage system complexity,
 including the separation of system logic into clearly defined functions

 Configuration The configuration of system components in accordance with best
 practices

 Cryptography and
 Key Management

 The safe use of cryptographic primitives and functions, along with the
 presence of robust mechanisms for key generation and distribution

 Data Handling The safe handling of user inputs and data processed by the system

 Documentation The presence of comprehensive and readable codebase documentation

 Maintenance The timely maintenance of system components to mitigate risk

 Memory Safety
 and Error Handling

 The presence of memory safety and robust error-handling mechanisms

 Testing and
 Verification

 The presence of robust testing procedures (e.g., unit tests, integration
 tests, and verification methods) and sufficient test coverage

 Rating Criteria

 Rating Description

 Strong No issues were found, and the system exceeds industry standards.

 Satisfactory Minor issues were found, but the system is compliant with best practices.

 Moderate Some issues that may affect system safety were found.

 Trail of Bits 35 Flux Security Assessment
 PUBLIC

 Weak Many issues that affect system safety were found.

 Missing A required component is missing, significantly affecting system safety.

 Not Applicable The category is not applicable to this review.

 Not Considered The category was not considered in this review.

 Further
 Investigation
 Required

 Further investigation is required to reach a meaningful conclusion.

 Trail of Bits 36 Flux Security Assessment
 PUBLIC

 C. Non-Security-Related Findings

 This appendix contains findings that do not have immediate or obvious security
 implications. However, they may facilitate exploit chains targeting other vulnerabilities or
 may become easily exploitable in future releases.

 1. Case-insensitive string comparison is done using strings.ToLower function
 and == operator . This results in a significant increase in both computational and
 memory complexity. This is because strings.ToLower will allocate a new string
 and compute the full lowercase version of the string, even if the first characters of
 the strings do not match. Use strings.EqualFold for comparing strings instead.
 Also, add the Staticcheck tool with the SA6005 check to the CI/CD to identify similar
 issues.

 if strings.ToLower(event) == strings.ToLower(e) {

 Figure C.1: Example of case-insensitive string comparison using strings.ToLower
 (notification-controller/internal/server/receiver_handlers.go#167)

 The above file includes three instances of this type of comparison. We did not find
 this issue anywhere in the codebase aside from this file.

 2. Useless assignment. The following assignment has no effect since the function
 returns immediately afterward and can be removed.

 template = template[1 :]
 return fmt.Errorf("--filter-extract is malformed")

 Figure C.2: Useless assignment
 (flux2/cmd/flux/create_image_policy.go#186-187)

 3. Calling defer in a for loop. Using a defer statement inside a for loop could
 cause unexpected conditions because the deferred function is called when the
 function exits, not at the end of each loop iteration. Delete the temporary directory
 at the end of the loop instead of using defer .

 for _, obj := range objects {
 // (...)
 defer cleanupDir(tmpDir)

 Figure C.3: Using defer in a for loop (flux2/internal/build/diff.go#89–119)

 4. Use of two different, nearly identical, SecureJoin functions. The
 pkg/git/gogit/fs/osfs_os.go file uses both pkg/git/gogit/fs.SecureJoin

 Trail of Bits 37 Flux Security Assessment
 PUBLIC

https://staticcheck.dev/
https://staticcheck.dev/docs/checks#SA6005
https://github.com/fluxcd/notification-controller/blob/b80c2c4060f62af40c06fe2f6f3bef295ee56e43/internal/server/receiver_handlers.go#L167
https://github.com/fluxcd/flux2/blob/44d69d6fc0c353e79c1bad021a4aca135033bce8/cmd/flux/create_image_policy.go#L186-L187
https://github.com/fluxcd/flux2/blob/44d69d6fc0c353e79c1bad021a4aca135033bce8/internal/build/diff.go#L89-L119

 and github.com/cyphar/filepath-securejoin.SecureJoin , which have
 nearly identical implementations.

 func (fs *OS) Chroot(path string) (billy.Filesystem, error) {
 joined, err := securejoin.SecureJoin (fs.workingDir, path)
 if err != nil {

 return nil , err
 }
 return New(joined), nil

 }
 // (...)
 func (fs *OS) abs(filename string) (string , error) {

 if filename == fs.workingDir {
 filename = "/"

 } else if strings.HasPrefix(filename,
 fs.workingDir+ string (filepath.Separator)) {

 filename = strings.TrimPrefix(filename,
 fs.workingDir+ string (filepath.Separator))

 }
 return SecureJoin (fs.workingDir, filename)

 }

 Figure C.4: Use of two SecureJoin functions from different packages that have the
 same implementation (pkg/git/gogit/fs/osfs_os.go#218–263)

 5. Use of the filepath.Join function followed by the insideWorkingDirEval
 function instead of SecureJoin . The Lstat and Readlink functions in the
 pkg/git/gogit/fs/osfs_os.go file use filepath.Join to join two directories
 and then call insideWorkingDirEval to ensure that the resulting path is within
 the root directory. However, this is what the SecureJoin function does; the logic
 should be simplified to a single SecureJoin call, and the insideWorkingDirEval
 and insideWorkingDir helper functions should be removed.

 Trail of Bits 38 Flux Security Assessment
 PUBLIC

https://github.com/fluxcd/pkg/blob/2a323d771e17af02dee2ccbbb9b445b78ab048e5/git/gogit/fs/osfs_os.go#L218-L263
https://github.com/fluxcd/pkg/blob/2a323d771e17af02dee2ccbbb9b445b78ab048e5/git/gogit/fs/osfs_os.go#L196-L205
https://github.com/fluxcd/pkg/blob/2a323d771e17af02dee2ccbbb9b445b78ab048e5/git/gogit/fs/osfs_os.go#L207-L215
https://github.com/fluxcd/pkg/blob/2a323d771e17af02dee2ccbbb9b445b78ab048e5/git/gogit/fs/osfs_os.go
https://github.com/fluxcd/pkg/blob/2a323d771e17af02dee2ccbbb9b445b78ab048e5/git/gogit/fs/osfs_os.go#L277-L293
https://github.com/fluxcd/pkg/blob/2a323d771e17af02dee2ccbbb9b445b78ab048e5/git/gogit/fs/osfs_os.go#L265-L275

 D. Issue Occurrences

 Here is a full list of locations affected by TOB-FLUX-5 :

 ● source-controller/internal/controller/helmchart_controller.go:131
 4

 ● source-controller/internal/controller/helmchart_controller.go:128
 4

 ● source-controller/internal/controller/helmchart_controller.go:125
 4

 ● notification-controller/internal/server/receiver_handlers.go:412

 ● notification-controller/internal/server/event_handlers.go:127

 ● notification-controller/internal/server/event_handlers.go:69

 ● notification-controller/internal/server/event_handlers.go:65

 ● notification-controller/internal/controller/alert_controller.go:2
 06

 ● flux2/pkg/uninstall/uninstall.go:328

 ● flux2/pkg/uninstall/uninstall.go:307

 ● flux2/pkg/uninstall/uninstall.go:293

 ● flux2/pkg/uninstall/uninstall.go:279

 ● flux2/pkg/uninstall/uninstall.go:265

 ● flux2/pkg/uninstall/uninstall.go:251

 ● flux2/pkg/uninstall/uninstall.go:237

 ● flux2/pkg/uninstall/uninstall.go:223

 ● flux2/pkg/uninstall/uninstall.go:209

 ● flux2/pkg/uninstall/uninstall.go:195

 ● flux2/pkg/uninstall/uninstall.go:181

 ● flux2/pkg/uninstall/uninstall.go:167

 Trail of Bits 39 Flux Security Assessment
 PUBLIC

 ● flux2/pkg/uninstall/uninstall.go:153

 ● flux2/pkg/uninstall/uninstall.go:139

 ● flux2/pkg/uninstall/uninstall.go:117

 ● flux2/pkg/uninstall/uninstall.go:104

 ● flux2/pkg/uninstall/uninstall.go:91

 ● flux2/pkg/uninstall/uninstall.go:78

 ● flux2/pkg/uninstall/uninstall.go:65

 ● flux2/pkg/uninstall/uninstall.go:52

 Here is a full list of locations affected by TOB-FLUX-6 :

 ● flux2/pkg/manifestgen/manifest.go:46

 ● flux2/pkg/manifestgen/install/manifests.go:95

 ● source-controller/internal/controller/storage.go:125

 ● source-controller/internal/controller/storage.go:614

 ● source-controller/internal/fs/fs.go:90

 ● source-controller/pkg/azure/blob.go:228

 ● source-controller/pkg/gcp/gcp.go:121

 ● pkg/oci/client/internal/fs/fs.go:90

 ● pkg/tar/tar.go:119

 ● pkg/tar/tar.go:167

 ● pkg/git/gogit/fs/osfs_os.go:130

 ● pkg/git/gogit/fs/osfs_os.go:242

 Here is a full list of locations affected by TOB-FLUX-7 :

 ● kustomize-controller/internal/decryptor/decryptor.go:505

 ● flux2/internal/build/diff.go:176

 Trail of Bits 40 Flux Security Assessment
 PUBLIC

 ● flux2/internal/build/diff.go:170

 ● flux2/cmd/flux/manifests.embed.go:41

 ● pkg/testserver/artifact.go:170

 ● pkg/oci/client/build.go:148

 ● pkg/tar/tar.go:167

 ● pkg/tar/tar.go:119

 ● pkg/helmtestserver/server.go:66

 ● pkg/git/internal/e2e/utils.go:274

 Trail of Bits 41 Flux Security Assessment
 PUBLIC

 E. Automated Static Analysis

 This appendix describes the setup of the automated analysis tools used during this audit.

 Though static analysis tools frequently report false positives, they detect certain categories
 of issues, such as memory disclosures, misspecified format strings, and the use of unsafe
 APIs, with essentially perfect precision. We recommend periodically running these static
 analysis tools and reviewing their findings.

 golangci-lint
 We installed the golangci-lint tool by following the installation guide .

 To analyze the codebase using golangci-lint , we navigated to the root directory of the
 target and executed the following command:

 golangci-lint run --enable-all

 If the --enable-all option is too noisy, specific linters can be disabled using the -D
 <name_of_linter> option. It is also possible to run only selected linters using the
 --disable-all -E <gosec | staticcheck | nakedret | ...other_linters> option.

 Some underlying linters may require a successful build of the Go project. They may silently
 ignore Go packages that are not yet built or have failing builds.

 Semgrep
 To install Semgrep, we used pip by running python3 -m pip install semgrep .

 To run Semgrep on the codebase, we ran the following command in the root directory of
 the project (running multiple predefined rules simultaneously by providing multiple
 --config arguments):

 semgrep --config "p/trailofbits" --config "p/ci" --config
 "p/security-audit" --config "p/semgrep-go-correctness"
 --metrics=off

 Semgrep Pro Engine includes cross-file (interfile) and cross-function (interprocedural)
 analysis. To run Semgrep with the Pro Engine, we used the following commands:

 semgrep login
 semgrep install-semgrep-pro
 semgrep --pro --config "p/default" --metrics off

 We recommend integrating Semgrep into the project's CI/CD pipeline. To thoroughly
 understand the Semgrep tool, refer to our Trail of Bits Testing Handbook , where we aim to

 Trail of Bits 42 Flux Security Assessment
 PUBLIC

https://golangci-lint.run/usage/install/
https://appsec.guide/docs/static-analysis/semgrep/

 streamline Semgrep use and improve security testing effectiveness. Also, consider doing
 the following:

 ● Limit Semgrep to show results of only error-level severity by using the --severity
 ERROR flag.

 ● Focus first on rules with high confidence and medium- or high-impact metadata.

 ● Use the SARIF format (by using the --sarif Semgrep argument) with the SARIF
 Viewer for Visual Studio Code extension. This will make it easier to review the
 analysis results and drill down into specific issues to understand their impact and
 severity.

 CodeQL
 We installed CodeQL by following CodeQL's installation guide .

 Next, we ran the following command to create the project database for the Golang
 repository:

 codeql database create codeql.db --language=go

 We then ran the following command to query the database:

 codeql database analyze codeql.db -j 10 --format=csv
 --output=codeql_tob_go.csv -- go-developer-happiness go-lgtm-full
 go-security-and-quality go-security-experimental

 We also used private Trail of Bits query packs.

 Tru�eHog
 We used TruffleHog to detect sensitive data such as private keys and API tokens in the
 repositories’ Git histories.

 To detect sensitive information in the fluxcd GitHub organization, we used the following
 command:

 trufflehog github --org=fluxcd --only-verified

 The --only-verified flag specifies that only findings marked as "verified" should be
 included in the scan results. This helps filter out false positives and focuses on confirmed
 instances of sensitive information.

 Trail of Bits 43 Flux Security Assessment
 PUBLIC

https://marketplace.visualstudio.com/items?itemName=MS-SarifVSCode.sarif-viewer
https://marketplace.visualstudio.com/items?itemName=MS-SarifVSCode.sarif-viewer
https://codeql.github.com/docs/codeql-cli/getting-started-with-the-codeql-cli/
https://github.com/trufflesecurity/trufflehog

 F. Fix Review Results

 When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
 identified in the original report. This work involves a review of specific areas of the source
 code and system configuration, not comprehensive analysis of the system.

 On October 20, 2023, Trail of Bits reviewed the fixes and mitigations implemented by the
 Flux team for the issues identified in this report. We reviewed each fix to determine its
 effectiveness in resolving the associated issue.

 In summary, of the 10 issues described in this report, Flux has resolved seven issues, has
 partially resolved one issue, and has not resolved the remaining two issues. For additional
 information, please see the Detailed Fix Review Results below.

 ID Title Status

 1 SetExpiration does not set the expiration for the given key Resolved

 2 Inappropriate string trimming function Resolved

 3 Go’s default HTTP client uses a shared value that can be modified by
 other components

 Resolved

 4 Unhandled error value Resolved

 5 Potential implicit memory aliasing in for loops Resolved

 6 Directories created via os.MkdirAll are not checked for permissions Unresolved

 7 Directories and files created with overly lenient permissions Partially
 Resolved

 8 No restriction on minimum SSH RSA public key bit size Resolved

 9 Flux macOS release binary susceptible to .dylib injection Unresolved

 Trail of Bits 44 Flux Security Assessment
 PUBLIC

 10 Path traversal in SecureJoin implementation Resolved

 Trail of Bits 45 Flux Security Assessment
 PUBLIC

 Detailed Fix Review Results
 TOB-FLUX-1: SetExpiration does not set the expiration for the given key
 Resolved in PR #1185 on the source-controller repository. This PR adds a statement
 that reassigns the relevant index in the c.Items map, allowing the modified expiration
 value to be preserved.

 TOB-FLUX-2: Inappropriate string trimming function
 Resolved in PR #590 on the notification-controller repository. This PR replaces the
 call to the strings.TrimLeft function with a call to the strings.TrimPrefix function.

 TOB-FLUX-3: Go’s default HTTP client uses a shared value that can be modified by
 other components
 Resolved in PR #4182 on the flux2 repository. This PR modifies the relevant code to use
 the default client provided by the hashicorp/go-cleanhttp library. Unlike the default
 client provided by Go’s http library, this client does not share the global state with other
 clients.

 TOB-FLUX-4: Unhandled error value
 Resolved in PR #4181 on the flux2 repository. This PR adds a check on the error value
 returned by the getRows function.

 TOB-FLUX-5: Potential implicit memory aliasing in for loops
 Resolved in PR #1257 on the source-controller repository, PR #627 on the
 notification-controller repository, and PR #4329 on the flux2 repository. These
 PRs fix the implicit memory aliasing problems, sometimes by copying list elements and
 sometimes by passing references to list elements (instead of to loop variables).

 TOB-FLUX-6: Directories created via os.MkdirAll are not checked for permissions
 Unresolved. OSTIF provided the following context for this finding’s fix status:

 We have analyzed the occurrences and concluded that they all target paths within
 directories created using os.MkdirTemp .

 Since multiple programs or goroutines invoking this function simultaneously won't select
 the same or preexisting directory, and the directory's existence is short-lived, any
 potential exploit would need to be time-based and meticulously crafted to run in parallel
 with the program's execution.

 Although we experimented with a solution like https://github.com/hiddeco/safeos , we
 have determined that the combination of the above approach and the environment in
 which our applications operate doesn't justify the maintenance and cost associated with
 such a solution.

 Trail of Bits 46 Flux Security Assessment
 PUBLIC

https://github.com/fluxcd/source-controller/pull/1185
https://github.com/fluxcd/notification-controller/pull/590
https://github.com/fluxcd/flux2/pull/4182
https://github.com/fluxcd/flux2/pull/4181
https://github.com/fluxcd/source-controller/pull/1257
https://github.com/fluxcd/notification-controller/pull/627
https://github.com/fluxcd/flux2/pull/4329
https://github.com/hiddeco/safeos

 TOB-FLUX-7: Directories and files created with overly lenient permissions
 Partially resolved in PR #663 on the pkg repository. This PR fixes the occurrence of this
 issue in the pkg/git/internal/e2e/utils.go file. However, the other occurrences of
 this issue (see appendix D) remain unresolved.

 OSTIF provided the following context for this finding’s fix status:

 Some overly lenient permissions persist because imposing breaking changes, such as
 revisions derived from file checksums, could create issues for downstream consumers.
 We are committed to resolving these in an upcoming minor release where feasible.

 TOB-FLUX-8: No restriction on minimum SSH RSA public key bit size
 Resolved in PR #4177 on the flux2 repository. This PR adds a strict minimum of 1024 bits
 for the RSA public key size.

 TOB-FLUX-9: Flux macOS release binary susceptible to .dylib injection
 Unresolved. OSTIF provided the following context for this finding’s fix status:

 We are currently in the challenging process (for an open-source project) of obtaining an
 Apple Developer Account to enable us to leverage a solution such as quill
 (https://github.com/anchore/quill) for code signing and notarization of our macOS
 binaries.

 Once we secure this account, we are committed to implementing this with high priority.

 TOB-FLUX-10: Path traversal in SecureJoin implementation
 Resolved in PR #650 on the pkg repository and PR #31 on the go-billy/osfs repository.
 PR #650 removes the pkg/git/gogit/fs library and replaces references to it with
 references to its upstream go-billy/osfs library . PR #31 adds changes made in
 pkg/git/gogit/fs to the go-billy/osfs repository, using a corrected implementation
 of the SecureJoinVFS function in the pjbgf/filepath-securejoin repository (later
 changed in PR #34 to the cyphar/filepath-securejoin repository). Notably, these
 implementations of SecureJoinVFS do not contain the erroneous return statement
 described in TOB-FLUX-10 .

 Trail of Bits 47 Flux Security Assessment
 PUBLIC

https://github.com/fluxcd/pkg/pull/663
https://github.com/fluxcd/flux2/pull/4177
https://github.com/anchore/quill
https://github.com/fluxcd/pkg/pull/650
https://github.com/go-git/go-billy/pull/31
https://github.com/pjbgf/filepath-securejoin
https://github.com/go-git/go-billy/pull/34
https://github.com/cyphar/filepath-securejoin

 G. Fix Review Status Categories

 The following table describes the statuses used to indicate whether an issue has been
 sufficiently addressed.

 Fix Status

 Status Description

 Undetermined The status of the issue was not determined during this engagement.

 Unresolved The issue persists and has not been resolved.

 Partially Resolved The issue persists but has been partially resolved.

 Resolved The issue has been sufficiently resolved.

 Trail of Bits 48 Flux Security Assessment
 PUBLIC

