
‭Flux‬
‭Security Assessment‬

‭November 8, 2023‬

‭Prepared for:‬

‭Hidde Beydals‬
‭Open Source Technology Improvement Fund (OSTIF)‬

‭Prepared by:‬‭Maciej Domański and Sam Alws‬

‭About Trail of Bits‬

‭Founded in 2012 and headquartered in New York, Trail of Bits provides technical security‬
‭assessment and advisory services to some of the world’s most targeted organizations. We‬
‭combine high-end security research with a real-world attacker mentality to reduce risk and‬
‭fortify code. With 100+ employees around the globe, we’ve helped secure critical software‬
‭elements that support billions of end users, including Kubernetes and the Linux kernel.‬

‭We maintain an exhaustive list of publications at‬‭https://github.com/trailofbits/publications‬‭,‬
‭with links to papers, presentations, public audit reports, and podcast appearances.‬

‭In recent years, Trail of Bits consultants have showcased cutting-edge research through‬
‭presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,‬
‭the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.‬

‭We specialize in software testing and code review projects, supporting client organizations‬
‭in the technology, defense, and finance industries, as well as government entities. Notable‬
‭clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.‬

‭Trail of Bits also operates a center of excellence with regard to blockchain security. Notable‬
‭projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,‬
‭MakerDAO, Matic, Uniswap, Web3, and Zcash.‬

‭To keep up to date with our latest news and announcements, please follow‬‭@trailofbits‬‭on‬
‭Twitter and explore our public repositories at‬‭https://github.com/trailofbits‬‭.‬‭To engage us‬
‭directly, visit our “Contact” page at‬‭https://www.trailofbits.com/contact‬‭,‬‭or email us at‬
‭info@trailofbits.com‬‭.‬

‭Trail of Bits, Inc.‬
‭228 Park Ave S #80688‬
‭New York, NY 10003‬
‭https://www.trailofbits.com‬
‭info@trailofbits.com‬

‭Trail of Bits‬ ‭1‬ ‭Flux Security Assessment‬
‭PUBLIC‬

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

‭Notices and Remarks‬

‭Copyright and Distribution‬
‭© 2023 by Trail of Bits, Inc.‬

‭All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this‬
‭report in the United Kingdom.‬

‭This report is considered by Trail of Bits to be public information; it is licensed to OSTIF‬
‭under the terms of the project statement of work and has been made public at OSTIF’s‬
‭request. Material within this report may not be reproduced or distributed in part or in‬
‭whole without the express written permission of Trail of Bits.‬

‭The sole canonical source for Trail of Bits publications is the‬‭Trail of Bits Publications page‬‭.‬
‭Reports accessed through any source other than that page may have been modified and‬
‭should not be considered authentic.‬

‭Test Coverage Disclaimer‬
‭All activities undertaken by Trail of Bits in association with this project were performed in‬
‭accordance with a statement of work and agreed upon project plan.‬

‭Security assessment projects are time-boxed and often reliant on information that may be‬
‭provided by a client, its affiliates, or its partners. As a result, the findings documented in‬
‭this report should not be considered a comprehensive list of security issues, flaws, or‬
‭defects in the target system or codebase.‬

‭Trail of Bits uses automated testing techniques to rapidly test the controls and security‬
‭properties of software. These techniques augment our manual security review work, but‬
‭each has its limitations: for example, a tool may not generate a random edge case that‬
‭violates a property or may not fully complete its analysis during the allotted time. Their use‬
‭is also limited by the time and resource constraints of a project.‬

‭Trail of Bits‬ ‭2‬ ‭Flux Security Assessment‬
‭PUBLIC‬

https://github.com/trailofbits/publications

‭Table of Contents‬

‭About Trail of Bits‬ ‭1‬
‭Notices and Remarks‬ ‭2‬
‭Table of Contents‬ ‭3‬
‭Executive Summary‬ ‭4‬
‭Project Summary‬ ‭6‬
‭Project Goals‬ ‭7‬
‭Project Targets‬ ‭9‬
‭Project Coverage‬ ‭10‬
‭Automated Testing‬ ‭11‬
‭Codebase Maturity Evaluation‬ ‭12‬
‭Summary of Findings‬ ‭14‬
‭Detailed Findings‬ ‭15‬

‭1. SetExpiration does not set the expiration for the given key‬ ‭15‬
‭2. Inappropriate string trimming function‬ ‭17‬
‭3. Go’s default HTTP client uses a shared value that can be modified by other‬
‭components‬ ‭18‬
‭4. Unhandled error value‬ ‭20‬
‭5. Potential implicit memory aliasing in for loops‬ ‭22‬
‭6. Directories created via os.MkdirAll are not checked for permissions‬ ‭24‬
‭7. Directories and files created with overly lenient permissions‬ ‭25‬
‭8. No restriction on minimum SSH RSA public key bit size‬ ‭26‬
‭9. Flux macOS release binary susceptible to .dylib injection‬ ‭28‬
‭10. Path traversal in SecureJoin implementation‬ ‭30‬

‭A. Vulnerability Categories‬ ‭33‬
‭B. Code Maturity Categories‬ ‭35‬
‭C. Non-Security-Related Findings‬ ‭37‬
‭D. Issue Occurrences‬ ‭39‬
‭E. Automated Static Analysis‬ ‭42‬
‭F. Fix Review Results‬ ‭44‬

‭Detailed Fix Review Results‬ ‭46‬
‭G. Fix Review Status Categories‬ ‭48‬

‭Trail of Bits‬ ‭3‬ ‭Flux Security Assessment‬
‭PUBLIC‬

‭Executive Summary‬

‭Engagement Overview‬
‭OSTIF engaged Trail of Bits to review the security of Flux, a tool for keeping Kubernetes‬
‭clusters in sync with configuration sources.‬

‭A team of two consultants conducted the review from July 24 to August 4, 2023, for a total‬
‭of four engineer-weeks of effort. Our testing efforts focused on the elements that are part‬
‭of the General Availability release. With full access to source code and documentation, we‬
‭performed static and dynamic testing of the Flux tool, using automated and manual‬
‭processes.‬

‭Observations and Impact‬
‭Trail of Bits found that Flux is well structured and generally written defensively. However,‬
‭we identified one undetermined-severity finding,‬‭TOB-FLUX-10‬‭,‬‭that poses an immediate‬
‭risk to users if the underlying package is treated as a standalone library because its main‬
‭security guarantee of preventing unauthorized read/write operations outside the root‬
‭directory has been proven false.‬

‭We did not identify any other findings that present an immediate threat to Flux or its users.‬
‭However, we did identify findings that could have been uncovered with more robust unit‬
‭testing (‬‭TOB-FLUX-1‬‭and‬‭TOB-FLUX-2‬‭). By expanding‬‭unit test coverage, Flux can further‬
‭enhance its resilience.‬

‭Recommendations‬
‭Based on the codebase maturity evaluation and findings identified during the security‬
‭review, Trail of Bits recommends that OSTIF take the following steps:‬

‭●‬ ‭Remediate the findings disclosed in this report.‬‭These‬‭findings should be‬
‭addressed as part of a direct remediation or as part of any refactor that may occur‬
‭when addressing other recommendations.‬

‭●‬ ‭Implement static analysis tools in the CI/CD pipeline.‬‭Implementing additional‬
‭tools presented in‬‭appendix E‬‭will help automatically‬‭find issues in the code that‬
‭could lead to security vulnerabilities before they are merged into the codebase.‬

‭Trail of Bits‬ ‭4‬ ‭Flux Security Assessment‬
‭PUBLIC‬

‭Finding Severities and Categories‬

‭The following tables provide the number of findings by severity and category.‬

‭EXPOSURE ANALYSIS‬

‭Severity‬ ‭Count‬

‭High‬ ‭0‬

‭Medium‬ ‭0‬

‭Low‬ ‭3‬

‭Informational‬ ‭6‬

‭Undetermined‬ ‭1‬

‭CATEGORY BREAKDOWN‬

‭Category‬ ‭Count‬

‭Access Controls‬ ‭1‬

‭Configuration‬ ‭2‬

‭Data Validation‬ ‭3‬

‭Error Reporting‬ ‭1‬

‭Undefined Behavior‬ ‭3‬

‭Trail of Bits‬ ‭5‬ ‭Flux Security Assessment‬
‭PUBLIC‬

‭Project Summary‬

‭Contact Information‬
‭The following managers were associated with this project:‬

‭Dan Guido‬‭, Account Manager‬ ‭Jeff Braswell‬‭, Project‬‭Manager‬
‭dan@trailofbits.com‬ ‭jeff.braswell@trailofbits.com‬

‭The following engineers were associated with this project:‬

‭Maciej Domański‬‭, Consultant‬ ‭Sam Alws‬‭, Consultant‬
‭maciej.domanski@trailofbits.com‬ ‭sam.alws@trailofbits.com‬

‭Project Timeline‬
‭The significant events and milestones of the project are listed below.‬

‭Date‬ ‭Event‬

‭July 20, 2023‬ ‭Pre-project kickoff call‬

‭July 31, 2023‬ ‭Status update meeting #1‬

‭August 4, 2023‬ ‭Delivery of report draft‬

‭August 4, 2023‬ ‭Report readout meeting‬

‭October 20, 2023‬ ‭Delivery of report draft with fix‬‭review‬

‭November 8, 2023‬ ‭Delivery of comprehensive report with fix review‬

‭Trail of Bits‬ ‭6‬ ‭Flux Security Assessment‬
‭PUBLIC‬

mailto:dan@trailofbits.com

‭Project Goals‬

‭The engagement was scoped to provide a security assessment of the Flux tool. Specifically,‬
‭we sought to answer the following non-exhaustive list of questions:‬

‭●‬ ‭Does the codebase conform to industry best practices?‬

‭●‬ ‭Are the system architecture and design foundationally secure?‬

‭●‬ ‭Are there any data exposures to or data extractions by unknown or unauthorized‬
‭sources?‬

‭●‬ ‭Can Flux be used to deliver malicious payloads and executables?‬

‭●‬ ‭Does Flux correctly use the Kubernetes API extension system and other core‬
‭components of the Kubernetes ecosystem?‬

‭●‬ ‭Does Flux securely handle credential storage and use?‬

‭●‬ ‭Are there appropriate access controls on critical functions?‬

‭●‬ ‭Are there areas within ownership and access controls that may be compromised or‬
‭altered to cause adverse states, unauthorized access, or exploitation?‬

‭●‬ ‭Can security constraints when syncing repositories and files be bypassed?‬

‭●‬ ‭Can files outside the designated file structure be replaced and/or modified?‬

‭●‬ ‭Could the system experience a denial of service (DoS)?‬

‭●‬ ‭Are all inputs and system parameters validated correctly?‬

‭●‬ ‭Do adequate account management, security controls, and separation exist to‬
‭operate the accounts safely?‬

‭●‬ ‭How are automated testing and validation of security controls in pipelines‬
‭performed?‬

‭●‬ ‭Are strong sign-in mechanisms used? How long do credentials last?‬

‭●‬ ‭What security mechanisms are used to store secrets?‬

‭●‬ ‭How are account groups, permissions, and attributes provisioned securely?‬

‭●‬ ‭How are public and cross-account access mechanisms managed?‬

‭Trail of Bits‬ ‭7‬ ‭Flux Security Assessment‬
‭PUBLIC‬

‭●‬ ‭How are shared resources managed and secured?‬

‭●‬ ‭How are service and application logging configured and monitored?‬

‭●‬ ‭How are data and customer information protected at rest and in transit?‬

‭●‬ ‭If supporting a multi-tenant environment, how is isolation implemented between‬
‭the tenants? What resources are shared between tenants?‬

‭●‬ ‭Are access controls for cross-namespace objects implemented securely?‬

‭Trail of Bits‬ ‭8‬ ‭Flux Security Assessment‬
‭PUBLIC‬

‭Project Targets‬

‭The engagement involved a review and testing of the targets listed below.‬

‭kustomize-controller‬
‭Repository‬ ‭https://github.com/fluxcd/kustomize-controller‬

‭Version‬ ‭8d9a1811655fff9a093f9c98397e2ed806876f10‬

‭Type‬ ‭Golang‬

‭Platform‬ ‭Linux‬

‭source-controller‬
‭Repository‬ ‭https://github.com/fluxcd/source-controller‬

‭Version‬ ‭7f40be76e90b2d4afe9f8f9d7f53ac719fe1205e‬

‭Type‬ ‭Golang‬

‭Platform‬ ‭Linux‬

‭notification-controller‬
‭Repository‬ ‭https://github.com/fluxcd/notification-controller‬

‭Version‬ ‭b80c2c4060f62af40c06fe2f6f3bef295ee56e43‬

‭Type‬ ‭Golang‬

‭Platform‬ ‭Linux‬

‭flux2‬
‭Repository‬ ‭https://github.com/fluxcd/flux2‬

‭Version‬ ‭44d69d6fc0c353e79c1bad021a4aca135033bce8‬

‭Type‬ ‭Golang‬

‭Platform‬ ‭Linux‬

‭pkg‬
‭Repository‬ ‭https://github.com/fluxcd/pkg‬

‭Version‬ ‭2a323d771e17af02dee2ccbbb9b445b78ab048e5‬

‭Type‬ ‭Golang‬

‭Platform‬ ‭Linux‬

‭Trail of Bits‬ ‭9‬ ‭Flux Security Assessment‬
‭PUBLIC‬

‭Project Coverage‬

‭This section provides an overview of the analysis coverage of the review, as determined by‬
‭our high-level engagement goals. Our approaches included the following:‬

‭●‬ ‭Manually reviewing the provided repositories with a focus on the controllers with‬
‭the General Availability components:‬

‭○‬ ‭source-controller‬

‭○‬ ‭kustomize-controller‬

‭○‬ ‭notification-controller‬

‭○‬ ‭flux2‬

‭○‬ ‭The‬‭pkg‬‭repository—in particular, the‬‭git/gogit/fs‬‭component‬

‭●‬ ‭Running static analysis tools and triaging results‬

‭Coverage Limitations‬
‭Because of the time-boxed nature of testing work, it is common to encounter coverage‬
‭limitations. The following list outlines the coverage limitations of the engagement and‬
‭indicates system elements that may warrant further review:‬

‭●‬ ‭We did not review the‬‭helm-controller‬‭,‬‭image-automation-controller‬‭,‬‭and‬
‭image-reflector-controller‬‭components since they are‬‭not General‬
‭Availability components.‬

‭●‬ ‭We did not thoroughly review the “Flux Multi-tenancy Threat Modelling” document.‬
‭However, it was the basis for our assumptions and potential attack scenarios.‬

‭●‬ ‭We did not review unit, end-to-end, or integration tests for completeness, nor did‬
‭we evaluate the fuzz testing coverage.‬

‭●‬ ‭We did not review whether logging information was sufficient.‬

‭●‬ ‭The list of outdated dependencies and deprecated methods was not included in our‬
‭assessment. Instead, we focused on analyzing the code of third-party libraries while‬
‭reviewing specific components.‬

‭Trail of Bits‬ ‭10‬ ‭Flux Security Assessment‬
‭PUBLIC‬

‭Automated Testing‬

‭Trail of Bits uses automated techniques to extensively test the security properties of‬
‭software. We use both open-source static analysis and fuzzing utilities, along with tools‬
‭developed in house, to perform automated testing of source code and compiled software.‬

‭Test Harness Configuration‬
‭We used the following tools in the automated testing phase of this project:‬

‭Tool‬ ‭Description‬ ‭Policy‬

‭Semgrep‬ ‭A static analysis tool designed to identify bugs and‬
‭specific code patterns across multiple languages‬

‭Appendix E‬

‭CodeQL‬ ‭A code analysis engine developed by GitHub to‬
‭automate security checks‬

‭Appendix E‬

‭TruffleHog‬ ‭An open-source tool that scans Git repositories for‬
‭secrets such as private keys and API tokens‬

‭Appendix E‬

‭golangci-lint‬ ‭A Go linters aggregator‬ ‭Appendix E‬

‭Areas of Focus‬
‭Our automated testing and verification work focused on the following system properties:‬

‭●‬ ‭The system does not produce undefined behavior.‬

‭●‬ ‭The code does not contain security or quality issues.‬

‭Trail of Bits‬ ‭11‬ ‭Flux Security Assessment‬
‭PUBLIC‬

https://github.com/returntocorp/semgrep
https://codeql.github.com/
https://github.com/trufflesecurity/trufflehog
https://golangci-lint.run/

‭Codebase Maturity Evaluation‬

‭Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of‬
‭the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies‬
‭identified here often stem from root causes within the software development life cycle that‬
‭should be addressed through standardization measures (e.g., the use of common libraries,‬
‭functions, or frameworks) or training and awareness programs.‬

‭Category‬ ‭Summary‬ ‭Result‬

‭Arithmetic‬ ‭The application’s primary purpose does not involve‬
‭mathematical operations; however, as with any software,‬
‭arithmetic operations are present. We found no‬
‭significant issues concerning the proper use of‬
‭mathematical operations.‬

‭Satisfactory‬

‭Auditing‬ ‭The density and quality of logged information is‬
‭sufficient. However, we did not try to verify this for all‬
‭execution paths or verify whether all information‬
‭required to perform incident response is always logged.‬

‭Further‬
‭Investigation‬
‭Required‬

‭Authentication /‬
‭Access Controls‬

‭The Kubernetes role-based access controls (RBACs)‬
‭follow best practices. RBAC impersonation is used to limit‬
‭the permissions of tenants.‬

‭Satisfactory‬

‭Complexity‬
‭Management‬

‭Overall, the Flux codebase has a logical organization and‬
‭clear structures to manage the system’s complexity. It is‬
‭possible for a new developer to quickly understand the‬
‭structure of the Flux codebase.‬

‭However, we found duplicate code that uses two distinct‬
‭SecureJoin‬‭implementations from different packages‬
‭with nearly identical implementations (‬‭appendix C,‬‭item‬
‭4‬‭).‬

‭Satisfactory‬

‭Configuration‬ ‭We found that specific components are generally‬
‭configured securely. However, some directories have‬
‭overly lenient permissions (‬‭TOB-FLUX-7‬‭). Additionally,‬
‭consider hardening the macOS release binary against‬
‭potential .dylib hijacking (‬‭TOB-FLUX-9‬‭).‬

‭Satisfactory‬

‭Trail of Bits‬ ‭12‬ ‭Flux Security Assessment‬
‭PUBLIC‬

‭Cryptography‬
‭and Key‬
‭Management‬

‭We found no major issues related to cryptography.‬ ‭Satisfactory‬

‭Data Handling‬ ‭Generally, Flux takes the necessary precautions when‬
‭validating most data types; however, we found that an‬
‭inappropriate string trimming function is used‬
‭(‬‭TOB-FLUX-2‬‭) and a minimum RSA public key bit size‬‭is‬
‭not validated (‬‭TOB-FLUX-8‬‭).‬

‭Satisfactory‬

‭Documentation‬ ‭User-facing documentation is thorough, with getting-‬
‭started guides, setup examples, and API references. In‬
‭addition, the code contains fairly thorough comments.‬
‭Nevertheless, we recommend completing documentation‬
‭with warnings to users about potentially dangerous‬
‭options and their implications (e.g., passing a password‬
‭as a CLI argument).‬

‭Satisfactory‬

‭Maintenance‬ ‭While our assessment did not prioritize checking for‬
‭outdated third-party dependencies, our brief analysis of‬
‭certain components revealed outdated security-related‬
‭libraries. Implementing‬‭govulncheck‬‭could improve‬
‭maintenance efforts for Golang code.‬

‭Further‬
‭Investigation‬
‭Required‬

‭Memory Safety‬
‭and Error‬
‭Handling‬

‭Flux is written in Go, which reduces its exposure to‬
‭memory safety issues. However, we found a minor issue‬
‭related to an unhandled error value (‬‭TOB-FLUX-4‬‭).‬

‭Satisfactory‬

‭Testing and‬
‭Verification‬

‭The codebase is verified using various tests, including‬
‭fuzz tests. Due to the time constraints of the audit, we‬
‭did not evaluate the thoroughness of the tests. However,‬
‭we found that some functions do not work properly‬
‭(‬‭TOB-FLUX-1‬‭), which could be caught with the unit‬‭test‬
‭that covers the identified function. We also recommend‬
‭customizing a CodeQL GitHub workflow with a more‬
‭detailed s‬‭ecurity-and-quality‬‭query suite‬
‭(‬‭TOB-FLUX-4‬‭).‬

‭Further‬
‭Investigation‬
‭Required‬

‭Trail of Bits‬ ‭13‬ ‭Flux Security Assessment‬
‭PUBLIC‬

‭Summary of Findings‬

‭The table below summarizes the findings of the review, including type and severity details.‬

‭ID‬ ‭Title‬ ‭Type‬ ‭Severity‬

‭1‬ ‭SetExpiration does not set the expiration for the‬
‭given key‬

‭Undefined‬
‭Behavior‬

‭Low‬

‭2‬ ‭Inappropriate string trimming function‬ ‭Data Validation‬ ‭Informational‬

‭3‬ ‭Go’s default HTTP client uses a shared value that‬
‭can be modified by other components‬

‭Undefined‬
‭Behavior‬

‭Low‬

‭4‬ ‭Unhandled error value‬ ‭Error Reporting‬ ‭Informational‬

‭5‬ ‭Potential implicit memory aliasing in for loops‬ ‭Undefined‬
‭Behavior‬

‭Informational‬

‭6‬ ‭Directories created via os.MkdirAll are not‬
‭checked for permissions‬

‭Access Controls‬ ‭Informational‬

‭7‬ ‭Directories and files created with overly lenient‬
‭permissions‬

‭Configuration‬ ‭Informational‬

‭8‬ ‭No restriction on minimum SSH RSA public key bit‬
‭size‬

‭Data Validation‬ ‭Informational‬

‭9‬ ‭Flux macOS release binary susceptible to .dylib‬
‭injection‬

‭Configuration‬ ‭Low‬

‭10‬ ‭Path traversal in SecureJoin implementation‬ ‭Data Validation‬ ‭Undetermined‬

‭Trail of Bits‬ ‭14‬ ‭Flux Security Assessment‬
‭PUBLIC‬

‭Detailed Findings‬

‭1. SetExpiration does not set the expiration for the given key‬

‭Severity:‬‭Low‬ ‭Difficulty:‬‭High‬

‭Type: Undefined Behavior‬ ‭Finding ID: TOB-FLUX-1‬

‭Target:‬‭source-controller/internal/cache/cache.go#163–172‬

‭Description‬
‭The‬‭SetExpiration‬‭function does not change the expiration‬‭for the given key because it‬
‭does not store the updated item back in the specific cache item (figure 1.1).‬

‭The‬‭SetExpiration‬‭function retrieves the corresponding‬‭item from the cache and assigns‬
‭it to the‬‭item‬‭variable (figure 1.1, line 165). Then‬‭it updates the item’s expiration time by‬
‭setting its‬‭Expiration‬‭field to the current time plus‬‭the provided‬‭expiration‬‭duration‬
‭(figure 1.1, line 170). Finally, the lock on the cache is released without the prior cache‬
‭update (figure 1.1, line 171), so any subsequent access to the cache item with the given key‬
‭will not see the updated expiration set by‬‭SetExpiration‬‭.‬

‭163‬ ‭func‬‭(‬‭c‬‭*cache‬‭)‬‭SetExpiration(key‬‭string‬‭,‬‭expiration‬‭time.Duration)‬‭{‬
‭164‬ ‭c.mu.Lock()‬
‭165‬ ‭item,‬‭ok‬‭:=‬‭c.Items[key]‬
‭166‬ ‭if‬‭!ok‬‭{‬
‭167‬ ‭c.mu.Unlock()‬
‭168‬ ‭return‬
‭169‬ ‭}‬
‭170‬ ‭item.Expiration‬‭=‬‭time.Now().Add(expiration).UnixNano()‬
‭171‬ ‭c.mu.Unlock()‬
‭172 }‬

‭Figure 1.1: The‬‭SetExpiration‬‭function responsible‬‭for setting the expiration for the given key‬
‭(‬‭source-controller/internal/cache/cache.go#163–172‬‭)‬

‭Exploit Scenario‬
‭A developer intentionally places sensitive data with a specific expiration date in the cache.‬
‭An attacker gains access to confidential information because the sensitive data has not‬
‭expired. This allows the attacker to further compromise the system.‬

‭Recommendations‬
‭Short term, explicitly assign the updated‬‭item‬‭variable‬‭back to the‬‭c.Items‬‭map before‬
‭releasing the lock (figure 1.2).‬

‭Trail of Bits‬ ‭15‬ ‭Flux Security Assessment‬
‭PUBLIC‬

https://github.com/fluxcd/source-controller/blob/7f40be76e90b2d4afe9f8f9d7f53ac719fe1205e/internal/cache/cache.go#L163-L172

‭func‬‭(c‬‭*cache)‬‭SetExpiration(key‬‭string‬‭,‬‭expiration‬‭time.Duration)‬‭{‬
‭c.mu.Lock()‬

‭if‬‭item,‬‭ok‬‭:=‬‭c.Items[key];‬‭ok‬‭{‬
‭item.Expiration‬‭=‬‭time.Now().Add(expiration).UnixNano()‬
‭c.Items[key]‬‭=‬‭item‬

‭}‬

‭c.mu.Unlock()‬
‭}‬

‭Figure 1.2: The proposed fix that updates the expiration time correctly‬

‭Long term, extend unit tests in the‬‭cache_test.go‬‭file to cover the‬‭SetExpiration‬
‭function.‬

‭Trail of Bits‬ ‭16‬ ‭Flux Security Assessment‬
‭PUBLIC‬

https://github.com/fluxcd/source-controller/blob/7f40be76e90b2d4afe9f8f9d7f53ac719fe1205e/internal/cache/cache_test.go

‭2. Inappropriate string trimming function‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭High‬

‭Type: Data Validation‬ ‭Finding ID: TOB-FLUX-2‬

‭Target:‬
‭notification-controller/internal/server/receiver_handlers.go#71-77‬

‭Description‬
‭The‬‭handlePayload‬‭function fails to remove a specific‬‭substring as intended because its‬
‭implementation uses the‬‭strings.TrimLeft‬‭function‬‭(figure 2.1). The incoming HTTP‬
‭request URL (‬‭r.RequestURI‬‭) is passed to the‬‭strings.TrimLeft‬‭function with the‬
‭apiv1.ReceiverWebhookPath‬‭parameter, which is set‬‭to‬‭/hook‬‭(figure 2.1, line 74). The‬
‭goal is to remove this specific substring from‬‭r.RequestURI‬‭.‬‭However, due to the use of‬
‭strings.TrimLeft‬‭, all occurrences of the specified‬‭characters, instead of just the exact‬
‭substring, are removed from the left side of the string. Consequently, the handling request‬
‭path is incorrectly logged (figure 2.1, line 76).‬

‭71‬ ‭func‬‭(s‬‭*ReceiverServer)‬‭handlePayload()‬‭func‬‭(w‬‭http.ResponseWriter,‬‭r‬
‭*http.Request)‬‭{‬
‭72‬ ‭return‬‭func‬‭(w‬‭http.ResponseWriter,‬‭r‬‭*http.Request)‬‭{‬
‭73‬ ‭ctx‬‭:=‬‭context.Background()‬
‭74‬ ‭digest‬‭:=‬‭url.PathEscape(‬‭strings.TrimLeft‬‭(r.RequestURI,‬
‭apiv1.ReceiverWebhookPath))‬‭// apiv1.ReceiverWebhookPath‬‭= “/hook”‬
‭75‬
‭76‬ ‭s.logger.Info(fmt.Sprintf(‬‭"handling request:‬‭%s"‬‭,‬‭digest))‬

‭Figure 2.1: The use of‬‭strings.TrimLeft‬‭in the‬‭handlePayload‬‭function‬
‭(‬‭notification-controller/internal/server/receiver_handlers.go#71–77‬‭)‬

‭Recommendations‬
‭Short term, fix the‬‭handlePayload‬‭function to properly‬‭remove substrings from the‬
‭remote URL using‬‭strings.TrimPrefix‬‭function.‬

‭Long term, implement unit tests for all string-parsing functions. In the CI/CD pipeline,‬
‭introduce the‬‭golangci-lint‬‭tool that uses the‬‭Staticcheck‬‭tool with the‬‭SA1024‬‭check.‬

‭Trail of Bits‬ ‭17‬ ‭Flux Security Assessment‬
‭PUBLIC‬

https://pkg.go.dev/strings#TrimLeft
https://github.com/fluxcd/notification-controller/blob/b80c2c4060f62af40c06fe2f6f3bef295ee56e43/internal/server/receiver_handlers.go#L71-L77
https://pkg.go.dev/strings#TrimPrefix
https://golangci-lint.run/
https://staticcheck.dev/
https://staticcheck.dev/docs/checks#SA1024

‭3. Go’s default HTTP client uses a shared value that can be modified by other‬
‭components‬

‭Severity:‬‭Low‬ ‭Difficulty:‬‭High‬

‭Type: Undefined Behavior‬ ‭Finding ID: TOB-FLUX-3‬

‭Target:‬‭flux2/pkg/manifestgen/install/install.go#91–97‬‭,‬
‭flux2/pkg/manifestgen/install/install.go#118–125‬

‭Description‬
‭Go's default HTTP client uses a shared‬‭http.DefaultClient‬‭value that can be modified‬
‭by other application components, which leads to unexpected behavior. In the case of Flux,‬
‭the issue arises in the‬‭GetLatestVersion‬‭and‬‭ExistingVersion‬‭functions, where the‬
‭timeout is modified.‬

‭91‬‭// GetLatestVersion calls the GitHub API and returns‬‭the latest released version‬
‭92‬ ‭func‬‭GetLatestVersion()‬‭(‬‭string‬‭,‬‭error‬‭)‬‭{‬
‭93‬ ‭ghURL‬‭:=‬‭"https://api.github.com/repos/fluxcd/flux2/releases/latest"‬
‭94‬ ‭c‬‭:=‬‭http.DefaultClient‬
‭95‬ ‭c.Timeout‬‭=‬‭15‬‭*‬‭time.Second‬
‭96‬
‭97‬ ‭res,‬‭err‬‭:=‬‭c.Get(ghURL)‬

‭Figure 3.1: The‬‭GetLatestVersion‬‭function that uses‬‭http.DefaultClient‬
‭(‬‭flux2/pkg/manifestgen/install/install.go#91–97‬‭)‬

‭118‬ ‭func‬‭ExistingVersion(version‬‭string‬‭)‬‭(‬‭bool‬‭,‬‭error‬‭)‬‭{‬
‭// (...)‬
‭123‬ ‭ghURL‬‭:=‬
‭fmt.Sprintf(‬‭"https://api.github.com/repos/fluxcd/flux2/releases/tags/%s"‬‭,‬‭version)‬
‭124‬ ‭c‬‭:=‬‭http.DefaultClient‬
‭125‬ ‭c.Timeout‬‭=‬‭15‬‭*‬‭time.Second‬

‭Figure 3.2: The‬‭ExistingVersion‬‭function that uses‬‭http.DefaultClient‬
‭(‬‭flux2/pkg/manifestgen/install/install.go#118–125‬‭)‬

‭Exploit Scenario‬
‭An attacker introduces a malicious library into the Flux codebase that can modify the‬
‭shared‬‭http.DefaultClient‬‭value. By manipulating this‬‭value, the attacker orchestrates‬
‭DoS attacks, disrupting the software’s normal operation.‬

‭Trail of Bits‬ ‭18‬ ‭Flux Security Assessment‬
‭PUBLIC‬

https://github.com/fluxcd/flux2/blob/44d69d6fc0c353e79c1bad021a4aca135033bce8/pkg/manifestgen/install/install.go#L91-L97C26
https://github.com/fluxcd/flux2/blob/44d69d6fc0c353e79c1bad021a4aca135033bce8/pkg/manifestgen/install/install.go#L118-L125C30

‭Recommendations‬
‭Short term, avoid using the shared‬‭http.DefaultClient‬‭value and instead use the‬
‭go-cleanhttp‬‭package to ensure that the HTTP client configuration remains unaffected‬
‭by other parts of the application.‬

‭Long term, periodically audit other global values that may impact different components‬
‭within Flux.‬

‭References‬
‭●‬ ‭hashicorp/go-cleanhttp‬‭—wrapping functions for accessing‬‭"clean" Go‬

‭http.Client‬‭values‬

‭●‬ ‭PoC showing shared global variable used by the default HTTP client‬

‭Trail of Bits‬ ‭19‬ ‭Flux Security Assessment‬
‭PUBLIC‬

https://pkg.go.dev/github.com/hashicorp/go-cleanhttp
https://github.com/hashicorp/go-cleanhttp
https://github.com/hashicorp/go-cleanhttp
https://go.dev/play/p/I9GMcskDyiA

‭4. Unhandled error value‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭High‬

‭Type: Error Reporting‬ ‭Finding ID: TOB-FLUX-4‬

‭Target:‬‭flux2/cmd/flux/events.go#129-138‬

‭Description‬
‭The‬‭eventsCmdRun‬‭function in the‬‭flux2‬‭repository‬‭ignores an error value returned by a‬
‭call to the‬‭getRows‬‭function. This can result in incorrect‬‭error reporting to the user.‬

‭129 rows,‬‭err‬‭:=‬‭getRows(ctx,‬‭kubeclient,‬‭clientListOpts,‬‭refListOpts,‬
‭showNamespace)‬
‭130‬ ‭if‬‭len‬‭(rows)‬‭==‬‭0‬‭{‬
‭131‬ ‭if‬‭eventArgs.allNamespaces‬‭{‬
‭132‬ ‭logger.Failuref(‬‭"No events found."‬‭)‬
‭133‬ ‭}‬‭else‬‭{‬
‭134‬ ‭logger.Failuref(‬‭"No events found in %s namespace."‬‭,‬
‭*kubeconfigArgs.Namespace)‬
‭135‬ ‭}‬
‭136‬
‭137‬ ‭return‬‭nil‬
‭138 }‬

‭Figure 4.1: Ignored‬‭err‬‭value (‬‭flux2/cmd/flux/events.go#129-138‬‭)‬

‭The‬‭getRows‬‭function returns a‬‭nil‬‭value in the‬‭rows‬‭variable whenever it returns an‬
‭error, which means the‬‭if‬‭statement’s condition on‬‭line 130 will be satisfied. The‬‭if‬
‭statement body will incorrectly report to the user that no events were found, rather than‬
‭printing the‬‭err‬‭value.‬

‭Recommendations‬
‭Short term, add an‬‭err‬‭!=‬‭nil‬‭check and modify the‬‭eventsCmdRun‬‭function to handle‬
‭error values accordingly (print an error message and then return‬‭err‬‭), as shown in the‬
‭following figure:‬

‭rows,‬‭err‬‭:=‬‭getRows(ctx,‬‭kubeclient,‬‭clientListOpts,‬‭refListOpts,‬‭showNamespace)‬
‭if‬‭err‬‭!=‬‭nil‬‭{‬

‭logger.Failuref(‬‭"Error while getting rows: %s"‬‭,‬‭err)‬
‭return‬‭err‬

‭}‬
‭if‬‭len‬‭(rows)‬‭==‬‭0‬‭{‬

‭if‬‭eventArgs.allNamespaces‬‭{‬
‭logger.Failuref(‬‭"No events found."‬‭)‬

‭Trail of Bits‬ ‭20‬ ‭Flux Security Assessment‬
‭PUBLIC‬

https://github.com/fluxcd/flux2/blob/44d69d6fc0c353e79c1bad021a4aca135033bce8/cmd/flux/events.go#L129-L138

‭}‬‭else‬‭{‬
‭logger.Failuref(‬‭"No events found in %s namespace."‬‭,‬

‭*kubeconfigArgs.Namespace)‬
‭}‬
‭return‬‭nil‬

‭}‬

‭Figure 4.2: Fixed code snippet‬

‭Long term, ensure that there are no other places in the Flux codebase where error values‬
‭are ignored. Adding CodeQL to the project CI/CD with the‬‭queries:‬
‭security-and-quality‬‭option will allow the‬‭go/useless-assignment-to-local‬
‭query to catch similar issues.‬

‭Trail of Bits‬ ‭21‬ ‭Flux Security Assessment‬
‭PUBLIC‬

https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/customizing-code-scanning#:~:text=%23%20security%2Dextended%20or%20security%2Dand%2Dquality.%0A%20%20%20%20queries%3A%20security%2Dextended
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/customizing-code-scanning#:~:text=%23%20security%2Dextended%20or%20security%2Dand%2Dquality.%0A%20%20%20%20queries%3A%20security%2Dextended

‭5. Potential implicit memory aliasing in for loops‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭High‬

‭Type: Undefined Behavior‬ ‭Finding ID: TOB-FLUX-5‬

‭Target: Various locations‬

‭Description‬
‭Throughout the Flux codebase, loop range values are passed by reference to functions.‬
‭This reference is unstable and is updated at each iteration of the‬‭for‬‭loop. Here are two‬
‭examples:‬

‭for‬‭_,‬‭resource‬‭:=‬‭range‬‭resources.Items‬‭{‬
‭if‬‭err‬‭:=‬‭s.annotate(ctx,‬‭&resource‬‭);‬‭err‬‭!=‬‭nil‬‭{‬

‭Figure 5.1: Example of memory aliasing in a‬‭for‬‭loop‬
‭(‬‭notification-controller/internal/server/receiver_handlers.go#411-412‬‭)‬

‭for‬‭_,‬‭i‬‭:=‬‭range‬‭list.Items‬‭{‬
‭if‬‭!bucket.GetArtifact().HasRevision(i.Status.ObservedSourceArtifactRevision)‬

‭{‬
‭reqs‬‭=‬‭append‬‭(reqs,‬‭reconcile.Request{NamespacedName:‬

‭client.ObjectKeyFromObject(‬‭&i‬‭)})‬

‭Figure 5.2: Example of memory aliasing in a‬‭for‬‭loop‬
‭(‬‭source-controller/internal/controller/helmchart_controller.go#1312-1314‬‭)‬

‭We did not find any examples where this results in a security problem. However, it is‬
‭generally a very unsafe practice; if any of these function calls preserved their input values‬
‭(e.g., by storing them in structs), the stored value would be changed while the‬‭for‬‭loop was‬
‭iterating.‬

‭A full list of occurrences of this issue can be found in‬‭appendix D‬‭.‬

‭Recommendations‬
‭Short term, replace these references with more permanent ones. Here are two possible‬
‭ways to do this:‬

‭for‬‭i,‬‭v‬‭:=‬‭range‬‭l‬‭{‬
‭//‬‭option 1:‬‭reference the entry in the list‬
‭// the reference still only lasts as long as the‬‭list does‬

‭Trail of Bits‬ ‭22‬ ‭Flux Security Assessment‬
‭PUBLIC‬

https://github.com/fluxcd/notification-controller/blob/b80c2c4060f62af40c06fe2f6f3bef295ee56e43/internal/server/receiver_handlers.go#L411-L412
https://github.com/fluxcd/source-controller/blob/9ff98d9c3d3a673f07705f877c297ad40c2241d5/internal/controller/helmchart_controller.go#L1312-L1314

‭foo(&l[i])‬

‭//‬‭option 2:‬‭copy the value before calling the function‬
‭vClone := v‬
‭foo(&vClone)‬

‭}‬

‭Figure 5.3: Safer ways to pass a reference to a function‬

‭Long term, implement the‬‭gosec‬‭tool in the project‬‭CI/CD to catch potential issues with‬
‭Golang.‬

‭References‬
‭●‬ ‭Beware of Implicit Memory Aliasing in Go For Loop‬

‭Trail of Bits‬ ‭23‬ ‭Flux Security Assessment‬
‭PUBLIC‬

https://github.com/securego/gosec
https://husni.dev/beware-of-implicit-memory-aliasing-in-go-foor-loop/

‭6. Directories created via os.MkdirAll are not checked for permissions‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭High‬

‭Type: Access Controls‬ ‭Finding ID: TOB-FLUX-6‬

‭Target: Various locations‬

‭Description‬
‭Flux creates certain directory paths with specific access permissions by using the‬
‭os.MkdirAll‬‭function. This function does not perform‬‭any permission checks when a‬
‭given directory path already exists. This would allow a local attacker to create a directory‬
‭with broad permissions before Flux could create the directory with narrower permissions,‬
‭possibly allowing the attacker to later tamper with the files.‬

‭A full list of occurrences of this issue can be found in‬‭appendix D‬‭.‬

‭Exploit Scenario‬
‭Eve has unprivileged access to a container running a Flux controller. Eve introduces new‬
‭directories or paths with‬‭0777‬‭permissions before‬‭the Flux code does so. Eve then deletes‬
‭and forges files in that directory to change the result of further code executed by the Flux‬
‭controller.‬

‭Recommendations‬
‭Short term, when using functions such as‬‭os.MkdirAll‬‭,‬‭os.WriteFile‬‭, or‬
‭outil.WriteFile‬‭, check all directories in the path‬‭and validate their owner and‬
‭permissions before performing operations on them. This will help avoid situations where‬
‭sensitive information is written to a preexisting attacker-controlled path.‬

‭Long term, enumerate files and directories for their expected permissions, and build‬
‭validation to ensure appropriate permissions are applied before creation and upon use.‬
‭Ideally, this validation should be centrally defined and used throughout the application as a‬
‭whole.‬

‭Trail of Bits‬ ‭24‬ ‭Flux Security Assessment‬
‭PUBLIC‬

‭7. Directories and files created with overly lenient permissions‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭High‬

‭Type: Configuration‬ ‭Finding ID: TOB-FLUX-7‬

‭Target: Various locations‬

‭Description‬
‭Flux creates various directories and files with overly lenient permissions. This would allow‬
‭an attacker with unprivileged access to edit, delete, and read files, interfering with Flux‬
‭controllers’ operations.‬

‭if‬‭err‬‭:=‬‭os.MkdirAll(abs,‬‭0‬‭o755);‬‭err‬‭!=‬‭nil‬‭{‬

‭Figure 7.1: Example of a directory created with overly lenient permissions‬
‭(‬‭pkg/tar/tar.go#167‬‭)‬

‭err‬‭=‬‭os.WriteFile(path,‬‭out,‬‭0‬‭o644)‬

‭Figure 7.2: Example of a file created with overly lenient permissions‬
‭(‬‭kustomize-controller/internal/decryptor/decryptor.go#505‬‭)‬

‭A full list of occurrences of this issue can be found in‬‭appendix D‬‭.‬

‭Recommendations‬
‭Short term, generally use permissions of‬‭0750‬‭or less‬‭for directories and‬‭0600‬‭or less for‬
‭files.‬

‭Long term, enumerate files and directories for their expected permissions overall, and‬
‭build validation to ensure appropriate permissions are applied before creation and upon‬
‭use. Ideally, this validation should be centrally defined and used throughout the application‬
‭as a whole.‬

‭Trail of Bits‬ ‭25‬ ‭Flux Security Assessment‬
‭PUBLIC‬

https://github.com/fluxcd/pkg/blob/2a323d771e17af02dee2ccbbb9b445b78ab048e5/tar/tar.go#L167
https://github.com/fluxcd/kustomize-controller/blob/8d9a1811655fff9a093f9c98397e2ed806876f10/internal/decryptor/decryptor.go#L505

‭8. No restriction on minimum SSH RSA public key bit size‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭High‬

‭Type: Data Validation‬ ‭Finding ID: TOB-FLUX-8‬

‭Target:‬‭flux2/internal/flags/rsa_key_bits.go‬

‭Description‬
‭Flux does not restrict a user from creating a Kubernetes secret for Git authentication using‬
‭a dangerous SSH RSA public key bit size (figure 8.1). A user can create a configuration with a‬
‭16-bit key size (figure 8.2), which is insecure because an attacker can easily brute force the‬
‭correct private key that matches the public key.‬

‭var‬‭defaultRSAKeyBits‬‭=‬‭2048‬
‭type‬‭RSAKeyBits‬‭int‬
‭// (...)‬
‭func‬‭(b‬‭*RSAKeyBits)‬‭Set(str‬‭string‬‭)‬‭error‬‭{‬

‭if‬‭strings.TrimSpace(str)‬‭==‬‭""‬‭{‬
‭*b‬‭=‬‭RSAKeyBits(defaultRSAKeyBits)‬
‭return‬‭nil‬

‭}‬
‭bits,‬‭err‬‭:=‬‭strconv.Atoi(str)‬
‭if‬‭err‬‭!=‬‭nil‬‭{‬

‭return‬‭err‬
‭}‬
‭if‬‭bits‬‭==‬‭0‬‭||‬‭bits%‬‭8‬‭!=‬‭0‬‭{‬

‭return‬‭fmt.Errorf(‬‭"RSA key bit size must be a multiples‬‭of 8"‬‭)‬
‭}‬
‭*b‬‭=‬‭RSAKeyBits(bits)‬
‭return‬‭nil‬

‭}‬

‭Figure 8.1: The‬‭Set‬‭function responsible for the‬‭--ssh-rsa-bits‬‭parameter validation‬
‭(‬‭flux2/internal/flags/rsa_key_bits.go#25–47‬‭)‬

‭$ flux‬‭create‬‭secret‬‭git‬‭podinfo-auth‬‭\‬
‭--url=ssh://git@github.com/stefanprodan/podinfo‬‭\‬
‭--export‬‭--ssh-rsa-bits‬‭16‬‭--ssh-key-algorithm=rsa‬

‭---‬
‭apiVersion:‬‭v1‬
‭kind:‬‭Secret‬
‭metadata:‬
‭name:‬‭podinfo-auth‬
‭namespace:‬‭flux-system‬

‭stringData:‬

‭Trail of Bits‬ ‭26‬ ‭Flux Security Assessment‬
‭PUBLIC‬

https://github.com/fluxcd/flux2/blob/44d69d6fc0c353e79c1bad021a4aca135033bce8/internal/flags/rsa_key_bits.go#L25-L47

‭identity:‬‭|‬
‭-----BEGIN‬‭PRIVATE‬‭KEY-----‬
‭MDoCAQAwDQYJKoZIhvcNAQEBBQAEJjAkAgEAAgMAsDkCAwEAAQICMZECAgDlAgIA‬
‭xQICAJUCAgCRAgFd‬
‭-----END‬‭PRIVATE‬‭KEY-----‬

‭identity.pub:‬‭|‬
‭ssh-rsa‬‭AAAAB3NzaC1yc2EAAAADAQABAAAAAwCwOQ‬‭==‬

‭Figure 8.2: The‬‭flux‬‭command to create a Kubernetes‬‭secret for Git‬
‭authentication using a 16-bit RSA public key‬

‭Recommendations‬
‭Short term, implement a strict minimum requirement of 1024 bits for the SSH RSA public‬
‭key size. This will ensure that users cannot create Kubernetes secrets with dangerously‬
‭small key sizes, such as the 16-bit example shown in figure 8.2. By enforcing a larger key‬
‭size, the system's security will significantly improve because it will be much more resistant‬
‭to brute-force attacks.‬

‭Long term, periodically review other Flux arguments to ensure they do not allow insecure‬
‭configurations.‬

‭Trail of Bits‬ ‭27‬ ‭Flux Security Assessment‬
‭PUBLIC‬

‭9. Flux macOS release binary susceptible to .dylib injection‬

‭Severity:‬‭Low‬ ‭Difficulty:‬‭High‬

‭Type: Configuration‬ ‭Finding ID: TOB-FLUX-9‬

‭Target:‬‭flux‬‭process‬

‭Description‬
‭The Flux macOS release binary does not have‬‭Hardened‬‭Runtime‬‭restrictions enabled‬
‭(figure 9.1), making the binary vulnerable to a .dylib file injection attack. A .dylib injection‬
‭attack allows an attacker to inject a custom dynamic library (.dylib) into a process,‬
‭potentially leading to, for example, unauthorized access to sensitive information.‬

‭$‬‭brew‬‭install‬‭fluxcd/tap/flux‬
‭$‬‭codesign‬‭-dvvv‬‭̀‬‭which‬‭flux‬‭̀‬
‭/usr/local/bin/flux:‬‭code‬‭object‬‭is‬‭not‬‭signed‬‭at‬‭all‬

‭Figure 9.1: Installing the official release of Flux by Homebrew and using the‬‭codesign‬‭tool to‬
‭check whether the binary has the‬‭kSecCodeSignatureEnforcement‬‭flag enabled‬

‭$‬‭cat‬‭inj.c‬
‭#include <stdio.h>‬
‭// The constructor attribute causes the function to be called automatically before‬
‭before main() is called‬
‭__attribute__((constructor))‬
‭static void customConstructor(int argc, const char **argv)‬
‭{‬
‭printf("Successfully injected dylib\n");‬

‭}‬
‭# Exporting the DYLD_INSERT_LIBRARIES environment variable to inject dynamic‬
‭libraries into other running processes‬
‭$‬‭export‬‭DYLD_INSERT_LIBRARIES=`pwd`/inj.dylib‬
‭$‬‭flux‬
‭Successfully‬‭injected‬‭dylib‬
‭Command‬‭line‬‭utility‬‭for‬‭assembling‬‭Kubernetes‬‭CD‬‭pipelines‬‭the‬‭GitOps‬‭way.‬
‭(...)‬

‭Figure 9.2: The proof of concept showing that the custom .dylib file can‬
‭be successfully injected into the‬‭flux‬‭process‬

‭Exploit Scenario‬
‭An attacker gains access to a target user’s machine and crafts a malicious .dylib to steal‬
‭passwords from the standard Flux input. Then the attacker sets the‬
‭DYLD_INSERT_LIBRARIES‬‭environment variable in the‬‭.zshrc file to the path of the crafted‬

‭Trail of Bits‬ ‭28‬ ‭Flux Security Assessment‬
‭PUBLIC‬

https://developer.apple.com/documentation/security/hardened_runtime
https://developer.apple.com/documentation/security/seccodesignatureflags/kseccodesignatureenforcement

‭.dylib. The user executes the‬‭flux‬‭bootstrap‬‭github‬‭command with the‬‭--token-auth‬
‭parameter and provides a GitHub personal access token through standard input. As a‬
‭result, the hijacked access token is sent to the attacker.‬

‭Recommendations‬
‭Short term, sign the release macOS Flux binaries and verify that the code signature flags‬
‭include the‬‭kSecCodeSignatureEnforcement‬‭flag to ensure‬‭the Hardened Runtime‬
‭protects the binary. The code signature flags are displayed in the‬‭CodeDirectory‬‭line‬
‭when running the‬‭codesign‬‭command (figure 9.3):‬

‭●‬ ‭A‬‭0x0‬‭flag indicates that the binary has a standard‬‭code signature without additional‬
‭features.‬

‭●‬ ‭A‬‭0x10000‬‭flag (‬‭kSecCodeSignatureEnforcement‬‭) indicates‬‭that the application‬
‭has implemented runtime hardening policies.‬

‭$ codesign‬‭-dvvv‬‭̀‬‭which‬‭kubectl‬‭̀‬
‭Executable‬‭=/Applications/Docker.app/Contents/Resources/bin/kubectl‬
‭Identifier‬‭=kubectl‬
‭Format‬‭=Mach-O‬‭thin‬‭(x86_64)‬
‭CodeDirectory‬‭v‬‭=‬‭20500‬‭size‬‭=‬‭431283‬‭flags‬‭=0x10000(runtime)‬‭hashes‬‭=‬‭13472‬‭+2‬
‭location‬‭=embedded‬

‭Figure 9.3: An example that uses the‬‭codesign‬‭tool‬‭to show a hardened‬‭kubectl‬‭binary‬

‭Long term, implement automatic checks in the project CI/CD pipeline to ensure the release‬
‭binary has Hardened Runtime restrictions enabled.‬

‭References‬
‭●‬ ‭DYLIB Injection in Golang apps on Apple silicon chips‬

‭●‬ ‭A Deep Dive into Penetration Testing of macOS Applications (Part 2)‬

‭Trail of Bits‬ ‭29‬ ‭Flux Security Assessment‬
‭PUBLIC‬

https://www.form3.tech/engineering/content/dylib-injection-in-golang-apps
https://www.cyberark.com/resources/threat-research-blog/a-deep-dive-into-penetration-testing-of-macos-applications-part-2

‭10. Path traversal in SecureJoin implementation‬

‭Severity:‬‭Undetermined‬ ‭Difficulty:‬‭Undetermined‬

‭Type: Data Validation‬ ‭Finding ID: TOB-FLUX-10‬

‭Target:‬‭pkg/git/gogit/fs/join.go‬

‭Description‬
‭The‬‭SecureJoinVFS‬‭function in‬‭pkg/git/gogit/fs‬‭is‬‭meant to join two paths,‬‭root‬‭and‬
‭unsafePath‬‭, with the condition that the returned path‬‭must be scoped within‬‭root‬‭.‬
‭However, it is possible for an attacker to cause the function to return a path outside the‬
‭root‬‭directory by crafting a symlink in the‬‭root‬‭directory.‬‭This compromises the methods‬
‭on the‬‭OS‬‭struct in the‬‭pkg/git/gogit/fs‬‭library.‬

‭Here is a portion of the code for‬‭SecureJoinVFS‬‭:‬

‭99‬ ‭// Absolute symlinks reset any work we've‬‭already done.‬
‭100‬ ‭if‬‭filepath.IsAbs(dest)‬‭{‬
‭101‬ ‭if‬‭!fi.IsDir()‬‭&&‬‭strings.HasPrefix(dest,‬
‭root+‬‭string‬‭(filepath.Separator))‬‭{‬
‭102‬ ‭return‬‭filepath.Clean(dest),‬‭nil‬
‭103‬ ‭}‬
‭104‬ ‭path.Reset()‬
‭105 }‬

‭Figure 10.1: Code snippet from‬‭SecureJoinVFS‬‭(‬‭pkg/git/gogit/fs/join.go#L99-L105‬‭)‬

‭The‬‭if‬‭statements on lines 100 and 101 check that‬‭dest‬‭(the destination of a symlink) is an‬
‭absolute path that has‬‭root/‬‭as a prefix. In this‬‭case,‬‭dest‬‭is returned. However, it is‬
‭possible for‬‭dest‬‭to both begin with‬‭root/‬‭and not‬‭be a child of‬‭root‬‭. For instance,‬
‭/tmp/rootDir/../a.txt‬‭begins with‬‭/tmp/rootDir/‬‭but‬‭is not a descendent of‬
‭/tmp/rootDir/‬‭(it resolves to‬‭/tmp/a.txt‬‭).‬

‭Here is a proof of concept showing how an attacker could write to a file outside the‬‭root‬
‭directory:‬

‭$‬‭# STATE OF THE FILESYSTEM BEFORE MAIN.GO IS RUN;‬‭NOTE THE SYMLINK IN ROOTDIR‬

‭$ pwd‬
‭/tmp/poc‬

‭$ ls -l rootDir‬
‭total 0‬

‭Trail of Bits‬ ‭30‬ ‭Flux Security Assessment‬
‭PUBLIC‬

https://github.com/fluxcd/pkg/blob/2a323d771e17af02dee2ccbbb9b445b78ab048e5/git/gogit/fs/join.go#L99-L105

‭lrwxr-xr-x 1 sam wheel 42 Aug 2 17:25 file.txt ->‬
‭/tmp/poc/rootDir/../unrelatedDir/pwned.txt‬

‭$ ls -l unrelatedDir‬
‭total 0‬

‭$‬‭# MAIN.GO SHOULD LEAVE EVERYTHING OUTSIDE OF ROOTDIR‬‭UNTOUCHED, SINCE IT USES THE‬
‭SECURE FILE SYSTEM‬

‭$ cat main.go‬
‭package‬‭main‬

‭import‬‭(‬‭"fmt"‬
‭"github.com/fluxcd/pkg/git/gogit/fs"‬
‭"os"‬‭)‬

‭func‬‭main()‬‭{‬
‭// Secure file system rooted in rootDir‬
‭my_os‬‭:=‬‭fs.New(‬‭"/tmp/poc/rootDir"‬‭)‬

‭// Open file.txt and write “hello” to it; shouldn’t‬‭affect anything outside‬
‭of rootDir‬

‭f,‬‭err‬‭:=‬‭my_os.OpenFile(‬‭"file.txt"‬‭,‬‭os.O_APPEND|os.O_CREATE|os.O_WRONLY,‬
‭0600‬‭)‬

‭if‬‭err‬‭!=‬‭nil‬‭{‬
‭fmt.Println(err)‬
‭return‬

‭}‬
‭_,‬‭err‬‭=‬‭f.Write([]‬‭byte‬‭(‬‭"hello\n"‬‭))‬
‭if‬‭err‬‭!=‬‭nil‬‭{‬

‭fmt.Println(err)‬
‭return‬

‭}‬
‭err‬‭=‬‭f.Close()‬
‭if‬‭err‬‭!=‬‭nil‬‭{‬

‭fmt.Println(err)‬
‭return‬

‭}‬

‭// To indicate that we haven’t hit any errors‬
‭fmt.Println(‬‭"success"‬‭)‬

‭}‬

‭$ go run main.go‬
‭success‬

‭$ ls -l rootDir‬
‭total 0‬
‭lrwxr-xr-x 1 sam wheel 42 Aug 2 17:25 file.txt ->‬
‭/tmp/poc/rootDir/../unrelatedDir/pwned.txt‬

‭$ ls -l unrelatedDir‬
‭total 8‬

‭Trail of Bits‬ ‭31‬ ‭Flux Security Assessment‬
‭PUBLIC‬

‭-rw------- 1 sam wheel 6 Aug 2 17:27 pwned.txt‬

‭$ cat unrelatedDir/pwned.txt‬
‭hello‬

‭$‬‭# A file in unrelatedDir got written to because‬‭of the malicious symlink‬

‭Figure 10.2: Proof of concept to demonstrate breaking out of‬‭SecureJoin‬‭root‬‭directory‬

‭This issue will be high severity when the‬‭pkg/git/gogit/fs‬‭library is considered on its‬
‭own because its main security guarantee is that it should not be possible to read or write‬
‭outside the‬‭root‬‭directory. However, due to the time-boxed‬‭nature of this audit, we did not‬
‭determine whether there is a way to exploit this vulnerability to affect Flux as a whole.‬

‭Recommendations‬
‭Short term, remove the‬‭return‬‭statement in figure‬‭10.1, line 102; the loop should continue‬
‭even when a symlink with an absolute path is hit, and the‬‭return‬‭statement at the end of‬
‭the function (line 114) is not susceptible to this vulnerability.‬

‭Long term, expand unit tests to catch similar issues.‬

‭Trail of Bits‬ ‭32‬ ‭Flux Security Assessment‬
‭PUBLIC‬

‭A. Vulnerability Categories‬

‭The following tables describe the vulnerability categories, severity levels, and difficulty‬
‭levels used in this document.‬

‭Vulnerability Categories‬

‭Category‬ ‭Description‬

‭Access Controls‬ ‭Insufficient authorization or assessment of rights‬

‭Auditing and Logging‬ ‭Insufficient auditing of actions or logging of problems‬

‭Authentication‬ ‭Improper identification of users‬

‭Configuration‬ ‭Misconfigured servers, devices, or software components‬

‭Cryptography‬ ‭A breach of system confidentiality or integrity‬

‭Data Exposure‬ ‭Exposure of sensitive information‬

‭Data Validation‬ ‭Improper reliance on the structure or values of data‬

‭Denial of Service‬ ‭A system failure with an availability impact‬

‭Error Reporting‬ ‭Insecure or insufficient reporting of error conditions‬

‭Patching‬ ‭Use of an outdated software package or library‬

‭Session Management‬ ‭Improper identification of authenticated users‬

‭Testing‬ ‭Insufficient test methodology or test coverage‬

‭Timing‬ ‭Race conditions or other order-of-operations flaws‬

‭Undefined Behavior‬ ‭Undefined behavior triggered within the system‬

‭Trail of Bits‬ ‭33‬ ‭Flux Security Assessment‬
‭PUBLIC‬

‭Severity Levels‬

‭Severity‬ ‭Description‬

‭Informational‬ ‭The issue does not pose an immediate risk but is relevant to security best‬
‭practices.‬

‭Undetermined‬ ‭The extent of the risk was not determined during this engagement.‬

‭Low‬ ‭The risk is small or is not one the client has indicated is important.‬

‭Medium‬ ‭User information is at risk; exploitation could pose reputational, legal, or‬
‭moderate financial risks.‬

‭High‬ ‭The flaw could affect numerous users and have serious reputational, legal,‬
‭or financial implications.‬

‭Difficulty Levels‬

‭Difficulty‬ ‭Description‬

‭Undetermined‬ ‭The difficulty of exploitation was not determined during this engagement.‬

‭Low‬ ‭The flaw is well known; public tools for its exploitation exist or can be‬
‭scripted.‬

‭Medium‬ ‭An attacker must write an exploit or will need in-depth knowledge of the‬
‭system.‬

‭High‬ ‭An attacker must have privileged access to the system, may need to know‬
‭complex technical details, or must discover other weaknesses to exploit this‬
‭issue.‬

‭Trail of Bits‬ ‭34‬ ‭Flux Security Assessment‬
‭PUBLIC‬

‭B. Code Maturity Categories‬

‭The following tables describe the code maturity categories and rating criteria used in this‬
‭document.‬

‭Code Maturity Categories‬

‭Category‬ ‭Description‬

‭Arithmetic‬ ‭The proper use of mathematical operations and semantics‬

‭Auditing‬ ‭The use of event auditing and logging to support monitoring‬

‭Authentication /‬
‭Access Controls‬

‭The use of robust access controls to handle identification and‬
‭authorization and to ensure safe interactions with the system‬

‭Complexity‬
‭Management‬

‭The presence of clear structures designed to manage system complexity,‬
‭including the separation of system logic into clearly defined functions‬

‭Configuration‬ ‭The configuration of system components in accordance with best‬
‭practices‬

‭Cryptography and‬
‭Key Management‬

‭The safe use of cryptographic primitives and functions, along with the‬
‭presence of robust mechanisms for key generation and distribution‬

‭Data Handling‬ ‭The safe handling of user inputs and data processed by the system‬

‭Documentation‬ ‭The presence of comprehensive and readable codebase documentation‬

‭Maintenance‬ ‭The timely maintenance of system components to mitigate risk‬

‭Memory Safety‬
‭and Error Handling‬

‭The presence of memory safety and robust error-handling mechanisms‬

‭Testing and‬
‭Verification‬

‭The presence of robust testing procedures (e.g., unit tests, integration‬
‭tests, and verification methods) and sufficient test coverage‬

‭Rating Criteria‬

‭Rating‬ ‭Description‬

‭Strong‬ ‭No issues were found, and the system exceeds industry standards.‬

‭Satisfactory‬ ‭Minor issues were found, but the system is compliant with best practices.‬

‭Moderate‬ ‭Some issues that may affect system safety were found.‬

‭Trail of Bits‬ ‭35‬ ‭Flux Security Assessment‬
‭PUBLIC‬

‭Weak‬ ‭Many issues that affect system safety were found.‬

‭Missing‬ ‭A required component is missing, significantly affecting system safety.‬

‭Not Applicable‬ ‭The category is not applicable to this review.‬

‭Not Considered‬ ‭The category was not considered in this review.‬

‭Further‬
‭Investigation‬
‭Required‬

‭Further investigation is required to reach a meaningful conclusion.‬

‭Trail of Bits‬ ‭36‬ ‭Flux Security Assessment‬
‭PUBLIC‬

‭C. Non-Security-Related Findings‬

‭This appendix contains findings that do not have immediate or obvious security‬
‭implications. However, they may facilitate exploit chains targeting other vulnerabilities or‬
‭may become easily exploitable in future releases.‬

‭1.‬ ‭Case-insensitive string comparison is done using‬‭strings.ToLower‬‭function‬
‭and‬‭==‬‭operator‬‭.‬‭This results in a significant increase‬‭in both computational and‬
‭memory complexity. This is because‬‭strings.ToLower‬‭will allocate a new string‬
‭and compute the full lowercase version of the string, even if the first characters of‬
‭the strings do not match. Use‬‭strings.EqualFold‬‭for‬‭comparing strings instead.‬
‭Also, add the‬‭Staticcheck‬‭tool with the‬‭SA6005‬‭check‬‭to the CI/CD to identify similar‬
‭issues.‬

‭if‬‭strings.ToLower(event)‬‭==‬‭strings.ToLower(e)‬‭{‬

‭Figure C.1: Example of case-insensitive string comparison using‬‭strings.ToLower‬
‭(‬‭notification-controller/internal/server/receiver_handlers.go#167‬‭)‬

‭The above file includes three instances of this type of comparison. We did not find‬
‭this issue anywhere in the codebase aside from this file.‬

‭2.‬ ‭Useless assignment.‬‭The following assignment has no‬‭effect since the function‬
‭returns immediately afterward and can be removed.‬

‭template‬‭=‬‭template[‬‭1‬‭:]‬
‭return‬‭fmt.Errorf(‬‭"--filter-extract is malformed"‬‭)‬

‭Figure C.2: Useless assignment‬
‭(‬‭flux2/cmd/flux/create_image_policy.go#186-187‬‭)‬

‭3.‬ ‭Calling‬‭defer‬‭in a‬‭for‬‭loop.‬‭Using a‬‭defer‬‭statement‬‭inside a‬‭for‬‭loop could‬
‭cause unexpected conditions because the deferred function is called when the‬
‭function exits, not at the end of each loop iteration. Delete the temporary directory‬
‭at the end of the loop instead of using‬‭defer‬‭.‬

‭for‬‭_,‬‭obj‬‭:=‬‭range‬‭objects‬‭{‬
‭// (...)‬
‭defer‬‭cleanupDir(tmpDir)‬

‭Figure C.3: Using‬‭defer‬‭in a‬‭for‬‭loop (‬‭flux2/internal/build/diff.go#89–119‬‭)‬

‭4.‬ ‭Use of two different, nearly identical,‬‭SecureJoin‬‭functions.‬‭The‬
‭pkg/git/gogit/fs/osfs_os.go‬‭file uses both‬‭pkg/git/gogit/fs.SecureJoin‬

‭Trail of Bits‬ ‭37‬ ‭Flux Security Assessment‬
‭PUBLIC‬

https://staticcheck.dev/
https://staticcheck.dev/docs/checks#SA6005
https://github.com/fluxcd/notification-controller/blob/b80c2c4060f62af40c06fe2f6f3bef295ee56e43/internal/server/receiver_handlers.go#L167
https://github.com/fluxcd/flux2/blob/44d69d6fc0c353e79c1bad021a4aca135033bce8/cmd/flux/create_image_policy.go#L186-L187
https://github.com/fluxcd/flux2/blob/44d69d6fc0c353e79c1bad021a4aca135033bce8/internal/build/diff.go#L89-L119

‭and‬‭github.com/cyphar/filepath-securejoin.SecureJoin‬‭, which have‬
‭nearly identical implementations.‬

‭func‬‭(fs‬‭*OS)‬‭Chroot(path‬‭string‬‭)‬‭(billy.Filesystem,‬‭error‬‭)‬‭{‬
‭joined,‬‭err‬‭:=‬‭securejoin.SecureJoin‬‭(fs.workingDir,‬‭path)‬
‭if‬‭err‬‭!=‬‭nil‬‭{‬

‭return‬‭nil‬‭,‬‭err‬
‭}‬
‭return‬‭New(joined),‬‭nil‬

‭}‬
‭// (...)‬
‭func‬‭(fs‬‭*OS)‬‭abs(filename‬‭string‬‭)‬‭(‬‭string‬‭,‬‭error‬‭)‬‭{‬

‭if‬‭filename‬‭==‬‭fs.workingDir‬‭{‬
‭filename‬‭=‬‭"/"‬

‭}‬‭else‬‭if‬‭strings.HasPrefix(filename,‬
‭fs.workingDir+‬‭string‬‭(filepath.Separator))‬‭{‬

‭filename‬‭=‬‭strings.TrimPrefix(filename,‬
‭fs.workingDir+‬‭string‬‭(filepath.Separator))‬

‭}‬
‭return‬‭SecureJoin‬‭(fs.workingDir,‬‭filename)‬

‭}‬

‭Figure C.4: Use of two‬‭SecureJoin‬‭functions from different‬‭packages that have the‬
‭same implementation (‬‭pkg/git/gogit/fs/osfs_os.go#218–263‬‭)‬

‭5.‬ ‭Use of the‬‭filepath.Join‬‭function followed by the‬‭insideWorkingDirEval‬
‭function instead of‬‭SecureJoin‬‭.‬‭The‬‭Lstat‬‭and‬‭Readlink‬‭functions in the‬
‭pkg/git/gogit/fs/osfs_os.go‬‭file use‬‭filepath.Join‬‭to join two directories‬
‭and then call‬‭insideWorkingDirEval‬‭to ensure that‬‭the resulting path is within‬
‭the‬‭root‬‭directory. However, this is what the‬‭SecureJoin‬‭function does; the logic‬
‭should be simplified to a single‬‭SecureJoin‬‭call,‬‭and the‬‭insideWorkingDirEval‬
‭and‬‭insideWorkingDir‬‭helper functions should be removed.‬

‭Trail of Bits‬ ‭38‬ ‭Flux Security Assessment‬
‭PUBLIC‬

https://github.com/fluxcd/pkg/blob/2a323d771e17af02dee2ccbbb9b445b78ab048e5/git/gogit/fs/osfs_os.go#L218-L263
https://github.com/fluxcd/pkg/blob/2a323d771e17af02dee2ccbbb9b445b78ab048e5/git/gogit/fs/osfs_os.go#L196-L205
https://github.com/fluxcd/pkg/blob/2a323d771e17af02dee2ccbbb9b445b78ab048e5/git/gogit/fs/osfs_os.go#L207-L215
https://github.com/fluxcd/pkg/blob/2a323d771e17af02dee2ccbbb9b445b78ab048e5/git/gogit/fs/osfs_os.go
https://github.com/fluxcd/pkg/blob/2a323d771e17af02dee2ccbbb9b445b78ab048e5/git/gogit/fs/osfs_os.go#L277-L293
https://github.com/fluxcd/pkg/blob/2a323d771e17af02dee2ccbbb9b445b78ab048e5/git/gogit/fs/osfs_os.go#L265-L275

‭D. Issue Occurrences‬

‭Here is a full list of locations affected by‬‭TOB-FLUX-5‬‭:‬

‭●‬ ‭source-controller/internal/controller/helmchart_controller.go:131‬
‭4‬

‭●‬ ‭source-controller/internal/controller/helmchart_controller.go:128‬
‭4‬

‭●‬ ‭source-controller/internal/controller/helmchart_controller.go:125‬
‭4‬

‭●‬ ‭notification-controller/internal/server/receiver_handlers.go:412‬

‭●‬ ‭notification-controller/internal/server/event_handlers.go:127‬

‭●‬ ‭notification-controller/internal/server/event_handlers.go:69‬

‭●‬ ‭notification-controller/internal/server/event_handlers.go:65‬

‭●‬ ‭notification-controller/internal/controller/alert_controller.go:2‬
‭06‬

‭●‬ ‭flux2/pkg/uninstall/uninstall.go:328‬

‭●‬ ‭flux2/pkg/uninstall/uninstall.go:307‬

‭●‬ ‭flux2/pkg/uninstall/uninstall.go:293‬

‭●‬ ‭flux2/pkg/uninstall/uninstall.go:279‬

‭●‬ ‭flux2/pkg/uninstall/uninstall.go:265‬

‭●‬ ‭flux2/pkg/uninstall/uninstall.go:251‬

‭●‬ ‭flux2/pkg/uninstall/uninstall.go:237‬

‭●‬ ‭flux2/pkg/uninstall/uninstall.go:223‬

‭●‬ ‭flux2/pkg/uninstall/uninstall.go:209‬

‭●‬ ‭flux2/pkg/uninstall/uninstall.go:195‬

‭●‬ ‭flux2/pkg/uninstall/uninstall.go:181‬

‭●‬ ‭flux2/pkg/uninstall/uninstall.go:167‬

‭Trail of Bits‬ ‭39‬ ‭Flux Security Assessment‬
‭PUBLIC‬

‭●‬ ‭flux2/pkg/uninstall/uninstall.go:153‬

‭●‬ ‭flux2/pkg/uninstall/uninstall.go:139‬

‭●‬ ‭flux2/pkg/uninstall/uninstall.go:117‬

‭●‬ ‭flux2/pkg/uninstall/uninstall.go:104‬

‭●‬ ‭flux2/pkg/uninstall/uninstall.go:91‬

‭●‬ ‭flux2/pkg/uninstall/uninstall.go:78‬

‭●‬ ‭flux2/pkg/uninstall/uninstall.go:65‬

‭●‬ ‭flux2/pkg/uninstall/uninstall.go:52‬

‭Here is a full list of locations affected by‬‭TOB-FLUX-6‬‭:‬

‭●‬ ‭flux2/pkg/manifestgen/manifest.go:46‬

‭●‬ ‭flux2/pkg/manifestgen/install/manifests.go:95‬

‭●‬ ‭source-controller/internal/controller/storage.go:125‬

‭●‬ ‭source-controller/internal/controller/storage.go:614‬

‭●‬ ‭source-controller/internal/fs/fs.go:90‬

‭●‬ ‭source-controller/pkg/azure/blob.go:228‬

‭●‬ ‭source-controller/pkg/gcp/gcp.go:121‬

‭●‬ ‭pkg/oci/client/internal/fs/fs.go:90‬

‭●‬ ‭pkg/tar/tar.go:119‬

‭●‬ ‭pkg/tar/tar.go:167‬

‭●‬ ‭pkg/git/gogit/fs/osfs_os.go:130‬

‭●‬ ‭pkg/git/gogit/fs/osfs_os.go:242‬

‭Here is a full list of locations affected by‬‭TOB-FLUX-7‬‭:‬

‭●‬ ‭kustomize-controller/internal/decryptor/decryptor.go:505‬

‭●‬ ‭flux2/internal/build/diff.go:176‬

‭Trail of Bits‬ ‭40‬ ‭Flux Security Assessment‬
‭PUBLIC‬

‭●‬ ‭flux2/internal/build/diff.go:170‬

‭●‬ ‭flux2/cmd/flux/manifests.embed.go:41‬

‭●‬ ‭pkg/testserver/artifact.go:170‬

‭●‬ ‭pkg/oci/client/build.go:148‬

‭●‬ ‭pkg/tar/tar.go:167‬

‭●‬ ‭pkg/tar/tar.go:119‬

‭●‬ ‭pkg/helmtestserver/server.go:66‬

‭●‬ ‭pkg/git/internal/e2e/utils.go:274‬

‭Trail of Bits‬ ‭41‬ ‭Flux Security Assessment‬
‭PUBLIC‬

‭E. Automated Static Analysis‬

‭This appendix describes the setup of the automated analysis tools used during this audit.‬

‭Though static analysis tools frequently report false positives, they detect certain categories‬
‭of issues, such as memory disclosures, misspecified format strings, and the use of unsafe‬
‭APIs, with essentially perfect precision. We recommend periodically running these static‬
‭analysis tools and reviewing their findings.‬

‭golangci-lint‬
‭We installed the‬‭golangci-lint‬‭tool by following the‬‭installation guide‬‭.‬

‭To analyze the codebase using‬‭golangci-lint‬‭, we navigated‬‭to the‬‭root‬‭directory of the‬
‭target and executed the following command:‬

‭golangci-lint‬‭run‬‭--enable-all‬

‭If the‬‭--enable-all‬‭option is too noisy, specific‬‭linters can be disabled using the‬‭-D‬
‭<name_of_linter>‬‭option. It is also possible to run‬‭only selected linters using the‬
‭--disable-all‬‭-E‬‭<gosec‬‭|‬‭staticcheck‬‭|‬‭nakedret‬‭|‬‭...other_linters>‬‭option.‬

‭Some underlying linters may require a successful build of the Go project. They may silently‬
‭ignore Go packages that are not yet built or have failing builds.‬

‭Semgrep‬
‭To install Semgrep, we used‬‭pip‬‭by running‬‭python3‬‭-m‬‭pip‬‭install‬‭semgrep‬‭.‬

‭To run Semgrep on the codebase, we ran the following command in the‬‭root‬‭directory of‬
‭the project (running multiple predefined rules simultaneously by providing multiple‬
‭--config‬‭arguments):‬

‭semgrep --config‬‭"p/trailofbits"‬‭--config‬‭"p/ci"‬‭--config‬
‭"p/security-audit"‬‭--config‬‭"p/semgrep-go-correctness"‬
‭--metrics=off‬

‭Semgrep Pro Engine includes cross-file (interfile) and cross-function (interprocedural)‬
‭analysis. To run Semgrep with the Pro Engine, we used the following commands:‬

‭semgrep‬‭login‬
‭semgrep‬‭install-semgrep-pro‬
‭semgrep‬‭--pro‬‭--config‬‭"p/default"‬‭--metrics‬‭off‬

‭We recommend integrating Semgrep into the project's CI/CD pipeline. To thoroughly‬
‭understand the Semgrep tool, refer to our‬‭Trail of‬‭Bits Testing Handbook‬‭, where we aim to‬

‭Trail of Bits‬ ‭42‬ ‭Flux Security Assessment‬
‭PUBLIC‬

https://golangci-lint.run/usage/install/
https://appsec.guide/docs/static-analysis/semgrep/

‭streamline Semgrep use and improve security testing effectiveness. Also, consider doing‬
‭the following:‬

‭●‬ ‭Limit Semgrep to show results of only error-level severity by using the‬‭--severity‬
‭ERROR‬‭flag.‬

‭●‬ ‭Focus first on rules with high confidence and medium- or high-impact metadata.‬

‭●‬ ‭Use the SARIF format (by using the‬‭--sarif‬‭Semgrep‬‭argument) with the‬‭SARIF‬
‭Viewer for Visual Studio Code‬‭extension. This will‬‭make it easier to review the‬
‭analysis results and drill down into specific issues to understand their impact and‬
‭severity.‬

‭CodeQL‬
‭We installed CodeQL by following‬‭CodeQL's installation‬‭guide‬‭.‬

‭Next, we ran the following command to create the project database for the Golang‬
‭repository:‬

‭codeql‬‭database‬‭create‬‭codeql.db‬‭--language=go‬

‭We then ran the following command to query the database:‬

‭codeql database analyze codeql.db -j 10 --format=csv‬
‭--output=codeql_tob_go.csv -- go-developer-happiness go-lgtm-full‬
‭go-security-and-quality go-security-experimental‬

‭We also used private Trail of Bits query packs.‬

‭TruffleHog‬
‭We used‬‭TruffleHog‬‭to detect sensitive data such as‬‭private keys and API tokens in the‬
‭repositories’ Git histories.‬

‭To detect sensitive information in the‬‭fluxcd‬‭GitHub‬‭organization, we used the following‬
‭command:‬

‭trufflehog github --org=fluxcd --only-verified‬

‭The‬‭--only-verified‬‭flag specifies that only findings‬‭marked as "verified" should be‬
‭included in the scan results. This helps filter out false positives and focuses on confirmed‬
‭instances of sensitive information.‬

‭Trail of Bits‬ ‭43‬ ‭Flux Security Assessment‬
‭PUBLIC‬

https://marketplace.visualstudio.com/items?itemName=MS-SarifVSCode.sarif-viewer
https://marketplace.visualstudio.com/items?itemName=MS-SarifVSCode.sarif-viewer
https://codeql.github.com/docs/codeql-cli/getting-started-with-the-codeql-cli/
https://github.com/trufflesecurity/trufflehog

‭F. Fix Review Results‬

‭When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues‬
‭identified in the original report. This work involves a review of specific areas of the source‬
‭code and system configuration, not comprehensive analysis of the system.‬

‭On October 20, 2023, Trail of Bits reviewed the fixes and mitigations implemented by the‬
‭Flux team for the issues identified in this report. We reviewed each fix to determine its‬
‭effectiveness in resolving the associated issue.‬

‭In summary, of the 10 issues described in this report, Flux has resolved seven issues, has‬
‭partially resolved one issue, and has not resolved the remaining two issues. For additional‬
‭information, please see the Detailed Fix Review Results below.‬

‭ID‬ ‭Title‬ ‭Status‬

‭1‬ ‭SetExpiration does not set the expiration for the given key‬ ‭Resolved‬

‭2‬ ‭Inappropriate string trimming function‬ ‭Resolved‬

‭3‬ ‭Go’s default HTTP client uses a shared value that can be modified by‬
‭other components‬

‭Resolved‬

‭4‬ ‭Unhandled error value‬ ‭Resolved‬

‭5‬ ‭Potential implicit memory aliasing in for loops‬ ‭Resolved‬

‭6‬ ‭Directories created via os.MkdirAll are not checked for permissions‬ ‭Unresolved‬

‭7‬ ‭Directories and files created with overly lenient permissions‬ ‭Partially‬
‭Resolved‬

‭8‬ ‭No restriction on minimum SSH RSA public key bit size‬ ‭Resolved‬

‭9‬ ‭Flux macOS release binary susceptible to .dylib injection‬ ‭Unresolved‬

‭Trail of Bits‬ ‭44‬ ‭Flux Security Assessment‬
‭PUBLIC‬

‭10‬ ‭Path traversal in SecureJoin implementation‬ ‭Resolved‬

‭Trail of Bits‬ ‭45‬ ‭Flux Security Assessment‬
‭PUBLIC‬

‭Detailed Fix Review Results‬
‭TOB-FLUX-1: SetExpiration does not set the expiration for the given key‬
‭Resolved in‬‭PR #1185‬‭on the‬‭source-controller‬‭repository.‬‭This PR adds a statement‬
‭that reassigns the relevant index in the‬‭c.Items‬‭map,‬‭allowing the modified expiration‬
‭value to be preserved.‬

‭TOB-FLUX-2: Inappropriate string trimming function‬
‭Resolved in‬‭PR #590‬‭on the‬‭notification-controller‬‭repository. This PR replaces the‬
‭call to the‬‭strings.TrimLeft‬‭function with a call‬‭to the‬‭strings.TrimPrefix‬‭function.‬

‭TOB-FLUX-3: Go’s default HTTP client uses a shared value that can be modified by‬
‭other components‬
‭Resolved in‬‭PR #4182‬‭on the‬‭flux2‬‭repository. This‬‭PR modifies the relevant code to use‬
‭the default client provided by the‬‭hashicorp/go-cleanhttp‬‭library. Unlike the default‬
‭client provided by Go’s‬‭http‬‭library, this client‬‭does not share the global state with other‬
‭clients.‬

‭TOB-FLUX-4: Unhandled error value‬
‭Resolved in‬‭PR #4181‬‭on the‬‭flux2‬‭repository. This‬‭PR adds a check on the error value‬
‭returned by the‬‭getRows‬‭function.‬

‭TOB-FLUX-5: Potential implicit memory aliasing in for loops‬
‭Resolved in‬‭PR #1257‬‭on the‬‭source-controller‬‭repository,‬‭PR #627‬‭on the‬
‭notification-controller‬‭repository, and‬‭PR #4329‬‭on‬‭the‬‭flux2‬‭repository. These‬
‭PRs fix the implicit memory aliasing problems, sometimes by copying list elements and‬
‭sometimes by passing references to list elements (instead of to loop variables).‬

‭TOB-FLUX-6: Directories created via os.MkdirAll are not checked for permissions‬
‭Unresolved. OSTIF provided the following context for this finding’s fix status:‬

‭We have analyzed the occurrences and concluded that they all target paths within‬
‭directories created using‬‭os.MkdirTemp‬‭.‬

‭Since multiple programs or goroutines invoking this function simultaneously won't select‬
‭the same or preexisting directory, and the directory's existence is short-lived, any‬
‭potential exploit would need to be time-based and meticulously crafted to run in parallel‬
‭with the program's execution.‬

‭Although we experimented with a solution like‬‭https://github.com/hiddeco/safeos‬‭,‬‭we‬
‭have determined that the combination of the above approach and the environment in‬
‭which our applications operate doesn't justify the maintenance and cost associated with‬
‭such a solution.‬

‭Trail of Bits‬ ‭46‬ ‭Flux Security Assessment‬
‭PUBLIC‬

https://github.com/fluxcd/source-controller/pull/1185
https://github.com/fluxcd/notification-controller/pull/590
https://github.com/fluxcd/flux2/pull/4182
https://github.com/fluxcd/flux2/pull/4181
https://github.com/fluxcd/source-controller/pull/1257
https://github.com/fluxcd/notification-controller/pull/627
https://github.com/fluxcd/flux2/pull/4329
https://github.com/hiddeco/safeos

‭TOB-FLUX-7:‬‭Directories and files created with overly lenient permissions‬
‭Partially resolved in‬‭PR #663‬‭on the‬‭pkg‬‭repository. This PR fixes the occurrence of this‬
‭issue in the‬‭pkg/git/internal/e2e/utils.go‬‭file. However,‬‭the other occurrences of‬
‭this issue (see‬‭appendix D‬‭) remain unresolved.‬

‭OSTIF provided the following context for this finding’s fix status:‬

‭Some overly lenient permissions persist because imposing breaking changes, such as‬
‭revisions derived from file checksums, could create issues for downstream consumers.‬
‭We are committed to resolving these in an upcoming minor release where feasible.‬

‭TOB-FLUX-8: No restriction on minimum SSH RSA public key bit size‬
‭Resolved in‬‭PR #4177‬‭on the‬‭flux2‬‭repository. This‬‭PR adds a strict minimum of 1024 bits‬
‭for the RSA public key size.‬

‭TOB-FLUX-9: Flux macOS release binary susceptible to .dylib injection‬
‭Unresolved. OSTIF provided the following context for this finding’s fix status:‬

‭We are currently in the challenging process (for an open-source project) of obtaining an‬
‭Apple Developer Account to enable us to leverage a solution such as‬‭quill‬
‭(‬‭https://github.com/anchore/quill‬‭) for code signing‬‭and notarization of our macOS‬
‭binaries.‬

‭Once we secure this account, we are committed to implementing this with high priority.‬

‭TOB-FLUX-10: Path traversal in SecureJoin implementation‬
‭Resolved in‬‭PR #650‬‭on the‬‭pkg‬‭repository and‬‭PR #31‬‭on the‬‭go-billy/osfs‬‭repository.‬
‭PR #650 removes the‬‭pkg/git/gogit/fs‬‭library and replaces‬‭references to it with‬
‭references to its upstream‬‭go-billy/osfs‬‭library‬‭.‬‭PR #31 adds changes made in‬
‭pkg/git/gogit/fs‬‭to the‬‭go-billy/osfs‬‭repository,‬‭using a corrected implementation‬
‭of the‬‭SecureJoinVFS‬‭function in‬‭the‬‭pjbgf/filepath-securejoin‬‭repository‬‭(later‬
‭changed in‬‭PR #34‬‭to the‬‭cyphar/filepath-securejoin‬‭repository‬‭). Notably, these‬
‭implementations of‬‭SecureJoinVFS‬‭do not contain the‬‭erroneous‬‭return‬‭statement‬
‭described in‬‭TOB-FLUX-10‬‭.‬

‭Trail of Bits‬ ‭47‬ ‭Flux Security Assessment‬
‭PUBLIC‬

https://github.com/fluxcd/pkg/pull/663
https://github.com/fluxcd/flux2/pull/4177
https://github.com/anchore/quill
https://github.com/fluxcd/pkg/pull/650
https://github.com/go-git/go-billy/pull/31
https://github.com/pjbgf/filepath-securejoin
https://github.com/go-git/go-billy/pull/34
https://github.com/cyphar/filepath-securejoin

‭G. Fix Review Status Categories‬

‭The following table describes the statuses used to indicate whether an issue has been‬
‭sufficiently addressed.‬

‭Fix Status‬

‭Status‬ ‭Description‬

‭Undetermined‬ ‭The status of the issue was not determined during this engagement.‬

‭Unresolved‬ ‭The issue persists and has not been resolved.‬

‭Partially Resolved‬ ‭The issue persists but has been partially resolved.‬

‭Resolved‬ ‭The issue has been sufficiently resolved.‬

‭Trail of Bits‬ ‭48‬ ‭Flux Security Assessment‬
‭PUBLIC‬

